By a recent count, there are 32 different classes of superconducting materials [Physica C: Special Issue, “Superconducting materials: conventional, unconventional and undetermined. Dedicated to Theodore H. Geballe on the year of his 95th birthday,” edited by J. E. Hirsch, M. B. Maple, F. Marsiglio (▪, 2015), Vol. 514, pp. 1–444.], only 12 of which are generally believed to be “conventional,” i.e., described by the conventional BCS-electron–phonon theory of superconductivity. In this Perspective, I critically examine the successes and failures of the conventional theory to describe conventional superconductors and discuss what is understood and not understood about hydrogen-rich materials claimed to be high temperature conventional superconductors under high pressure. I argue that the materials' evidence accumulated to date calls for dethroning the conventional theory of its privileged status and seriously explore the alternative possibility that a single theory, different from the conventional theory, may describe superconductivity of all materials in a unified way.

1.
Physica C: Special Issue
, “
Superconducting materials: Conventional, unconventional and undetermined. Dedicated to Theodore H. Geballe on the year of his 95th birthday
,” edited by
J. E.
Hirsch
,
M. B.
Maple
, and
F.
Marsiglio
(
Elsevier, Amsterdam, the Netherlands
,
2015
), Vol.
514
, pp.
1
444
.
2.
J.
Schmalian
, “
Failed theories of superconductivity
,”
Mod. Phys. Lett. B
24
,
2679
(
2010
).
3.
G. R.
Stewart
, “
Unconventional superconductivity
,”
Adv. Phys.
66
,
75
(
2017
).
4.
F.
Marsiglio
and
J. C.
Carbotte
, “
Electron-phonon superconductivity
,” in
Superconductivity
, edited by
K. H.
Bennemann
and
J. B.
Ketterson
(
Springer
,
Berlin/Heidelberg
,
2008
).
5.
G. W.
Webb
,
F.
Marsiglio
, and
J. E.
Hirsch
, “
Superconductivity in the elements, alloys and simple compounds
,”
Physica C
514
,
17
27
(
2015
).
6.
M.
Tinkham
, Introduction to Superconductivity, 2nd ed. (
McGraw Hill
,
New York
,
1996
).
7.
C. W.
Chu
,
L. Z.
Deng
, and
B.
Lv
, “
Hole-doped cuprate high temperature superconductors
,”
Physica C
514
,
290
313
(
2015
).
8.
H.
Hosono
and
K.
Kuroki
, “
Iron-based superconductors: Current status of materials and pairing mechanism
,”
Physica C
514
,
399
422
(
2015
).
9.
B. D.
White
,
J. D.
Thompson
, and
M. B.
Maple
, “
Unconventional superconductivity in heavy-fermion compounds
,”
Physica C
514
,
246
278
(
2015
).
10.
Y.
Liu
and
Z.-Q.
Mao
, “
Unconventional superconductivity in Sr 2 RuO 4
,”
Physica C
514
,
339
353
(
2015
).
11.
E.
Bustarret
, “
Superconductivity in doped semiconductors
,”
Physica C
514
,
36
45
(
2015
).
12.
A. W.
Sleight
, “
Bismuthates: BaBiO3 and related superconducting phases
,”
Physica C
514
,
152
165
(
2015
).
13.
A. P.
Ramirez
, “
Superconductivity in alkali-doped C60
,”
Physica C
514
,
166
172
(
2015
).
14.
Y.
Kasahara
,
K.
Kuroki
,
S.
Yamanaka
et al, “
Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)
,”
Physica C
514
,
354
367
(
2015
).
15.
S. E.
Brown
, “
Organic superconductors: The Bechgaard salts and relatives
,”
Physica C
514
,
279
289
(
2015
).
16.
BCS: 50 Years
, edited by
L. N.
Cooper
and
D.
Feldman
(
World Scientific
,
Singapore
,
2011
).
17.
T.
Hanaguri
,
S.
Niitaka
,
K.
Kuroki
, and
H.
Takagi
, “
Unconventional s-wave superconductivity in Fe(Se,Te)
,”
Science
328
,
474
476
(
2010
).
18.
D. J.
Scalapino
, “
The case for d x 2 2 ? y 2 pairing in the cuprate superconductors
,”
Phys. Rep.
250
,
329
(
1995
).
19.
A. P.
Mackenzie
and
Y.
Maeno
, “
p-wave superconductivity
,”
Physica B
280
,
148
(
2000
).
20.
C.
Zhang
,
H.-F.
Li
,
Y.
Song
et al, “
Distinguishing S+− and S++ electron pairing symmetries by neutron spin resonance in superconducting NaFe 0.935 Co 0.045 As
,”
Phys. Rev. B
88
,
064504
(
2013
).
21.
Z.-C.
Gu
,
H.-C.
Jiang
, and
G.
Baskaran
, “
Emergence of p+ip superconductivity in two-dimensional doped Dirac systems
,”
Phys. Rev. B
101
,
205147
(
2020
).
22.
Y.
Jiang
,
D.-X.
Yao
,
E. W.
Carlson
,
H.-D.
Chen
, and
J.
Hu
, “
Andreev conductance in the d+idi?-wave superconducting states of graphene
,”
Phys. Rev. B
77
,
235420
(
2008
).
23.
I. I.
Mazin
and
M. D.
Johannes
, “
A critical assessment of the superconducting pairing symmetry in Na x CoO 2 Δ yH 2 O
,”
Nat. Phys.
1
,
91
(
2005
).
24.
S.
Ghosh
,
A.
Shekhter
,
F.
Jerzembeck
et al, “
Thermodynamic evidence for a two-component superconducting order parameter in Sr 2 RuO 4
,”
Nat. Phys.
17
,
199
(
2021
).
25.
D. J.
Scalapino
, “
Superconductivity and spin fluctuations
,”
J. Low Temp. Phys.
117
,
179
(
1999
).
26.
P. W.
Anderson
, “
The resonating valence bond state in La 2 CuO 4 and superconductivity
,”
Science
235
,
1196
(
1987
).
27.
P. W.
Phillips
,
L.
Yeo
, and
E. W.
Huang
, “
Exact theory for superconductivity in a doped Mott insulator
,”
Nat. Phys.
16
,
1175
(
2020
).
28.
D. H.
Nguyen
,
A.
Sidorenko
,
M.
Taupin
et al, “
Superconductivity in an extreme strange metal
,”
Nat. Commun.
12
,
4341
(
2021
).
29.
S. A.
Hartnoll
,
C. P.
Herzog
, and
G. T.
Horowitz
, “
Building a holographic superconductor
,”
Phys. Rev. Lett.
101
,
031601
(
2008
).
30.
A.
Frano
,
S.
Blanco-Canosa
,
B.
Keimer
et al, “
Charge ordering in superconducting copper oxides
,”
J. Phys. Condens. Matter
32
,
374005
(
2020
).
31.
Q.-H.
Wang
,
J. H.
Han
, and
D.-H.
Lee
, “
Superfluid density in the d-density-wave scenario
,”
Phys. Rev. Lett.
87
,
077004
(
2001
).
32.
D. F.
Agterberg
,
J. C.
Samus Davis
,
S. D.
Edkins
et al, “
The physics of pair-density waves: Cuprate superconductors and beyond
,”
Annu. Rev. Condens. Matter Phys.
11
,
231
(
2020
).
33.
D. M.
Newns
,
C. C.
Tsuei
, and
P. C.
Pattnaik
, “
Van Hove scenario for d-wave superconductivity in cuprates
,”
Phys. Rev. B
52
,
13611
(
1995
).
34.
V. J.
Emery
,
S. A.
Kivelson
, and
J. M.
Tranquada
, “
Stripe phases in high-temperature superconductors
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
8814
(
1999
).
35.
Y.
He
and
C. M.
Varma
, “
Collective modes in the loop-current-ordered phase of cuprates
,”
Phys. Rev. B
85
,
155102
(
2012
).
36.
N.
Doiron-Leyraud
,
O.
Cyr-Choinire
,
S.
Badoux
et al, “
Pseudogap phase of cuprate superconductors confined by Fermi surface topology
,”
Nat. Commun.
8
,
2044
(
2017
).
37.
R. M.
Fernandes
,
A. I.
Coldea
,
H.
Ding
et al, “
Ironing out the details of unconventional superconductivity
,” arXiv:2201.02095 (
2022
).
38.
A.
Bianconi
, “
Shape resonances in superstripes
,”
Nat. Phys.
9
,
536
(
2013
).
39.
Z.
Tesanovic
,
A. R.
Bishop
, and
R. L.
Martin
, “
Planes and chains: A novel excitonic mechanism for high temperature superconductivity
,”
Solid State Commun.
68
,
337
(
1988
).
40.
Y.
Takada
, “
Plasmon mechanism of superconductivity in the multivalley electron gas
,”
J. Phys. Soc. Jpn.
61
,
238
(
1992
).
41.
D.
Jerome
, “
Organic superconductors: A survey of low dimensional phenomena
,”
Mol. Crystals Liq. Crystals
79
,
511
(
1982
).
42.
N. F.
Mott
, “
Polaron models of high-temperature superconductors
,”
J. Phys.: Condens. Matter
5
,
3487
(
1993
).
43.
A. S.
Alexandrov
, “
Mott insulator-high Tc bipolaronic superconductor transition in cuprates
,”
Philos. Trans. R. Soc. London, Ser. A
356
,
197
(
1998
).
44.
H.
Keller
,
A.
Bussmann-Holder
, and
K. A.
Müller
, “
Jahn-Teller physics and high-Tc superconductivity
,”
Mater. Today
11
,
38
(
2008
).
45.
R.
Nandkishore
,
J.
Maciejko
,
D. A.
Huse
et al, “
Superconductivity of disordered Dirac fermions
,”
Phys. Rev. B
87
,
174511
(
2013
).
46.
P.
Zhang
,
K.
Yaji
,
T.
Hashimoto
et al, “
Observation of topological superconductivity on the surface of an iron-based superconductor
,”
Science
360
(
6385
),
182
(
2018
).
47.
Y.-H.
Chen
,
F.
Wilczek
,
E.
Witten
, and
B. I.
Halperin
, “
On anyon superconductivity
,”
Int. J. Mod. Phys. B
03
,
1001
(
1989
).
48.
M.
Leijnse
and
K.
Flensberg
, “
Introduction to topological superconductivity and Majorana fermions
,”
Semicond. Sci. Technol.
27
,
124003
(
2012
).
49.
C. W. J.
Beenakker
, “
Search for Majorana fermions in superconductors
,”
Annu. Rev. Condens. Matter Phys.
4
,
113
(
2013
).
50.
T.
Meng
and
L.
Balents
, “
Weyl superconductors
,”
Phys. Rev. B
86
,
054504
(
2012
).
51.
W.
Wang
,
S.
Kim
,
M.
Liu
et al, “
Evidence for an edge supercurrent in the Weyl superconductor MoTe2
,”
Science
368
,
534
(
2020
).
52.
H.-H.
Kuo
,
J.-H.
Chu
,
J. C.
Palmstrom
et al, “
Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors
,”
Science
352
,
958
(
2016
).
53.
D.
van der Marel
,
H. J. A.
Molegraaf
,
J.
Zaanen
et al, “
Quantum critical behaviour in a high-Tc superconductor
,”
Nature
425
,
271
(
2003
).
54.
K.
Haule
and
G.
Kotliar
, “
Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling
,”
New J. Phys.
11
,
025021
(
2009
).
55.
R. M.
Fernandes
,
P. P.
Orth
, and
J.
Schmalian
, “
Intertwined vestigial order in quantum materials: Nematicity and beyond
,”
Annu. Rev. Condens. Matter Phys.
10
,
133
(
2019
).
56.
E.
Fradkin
,
S. A.
Kivelson
, and
J. M.
Tranquada
, “
Theory of intertwined orders in high temperature superconductors
,”
Rev. Mod. Phys.
87
,
457
(
2015
).
57.
R. B.
Laughlin
, “
Gossamer superconductivity
,”
Philos. Mag.
86
,
1165
(
2006
).
58.
X.
Gong
,
M.
Kargarian
,
A.
Stern
et al, “
Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers
,”
Sci. Adv.
3
,
e1602579
(
2017
).
59.
Superconductivity
, edited by
R. D.
Parks
(
Marcel Dekker
,
New York
,
1969
), Vols.
I and II
.
60.
N.
Macsimovic
,
D. H.
Eilbott
,
T.
Cookmeyer
et al, “
Evidence for a delocalization quantum phase transition without symmetry breaking in CeCoIn5
,”
Science
375
(
6576
),
76
(
2022
).
61.
S.
Ran
,
C.
Eckberg
,
Q.-P.
Ding
et al, “
Nearly ferromagnetic spin-triplet superconductivity
,”
Science
365
,
684
(
2019
).
62.
M.
Oh
,
K. P.
Nuckolls
,
D.
Wong
et al, “
Evidence for unconventional superconductivity in twisted bilayer graphene
,”
Nature
600
,
240
(
2021
).
63.
J.
Bardeen
, “
Zero-point vibrations and superconductivity
,”
Phys. Rev.
79
,
167
(
1950
).
64.
H.
Fröhlich
, “
Theory of the superconducting state. I. The ground state at the absolute zero of temperature
,”
Phys. Rev.
79
,
845
(
1950
).
65.
E.
Maxwell
, “
Isotope effect in the superconductivity of mercury
,”
Phys. Rev.
78
,
477
(
1950
);
C. A.
Reynolds
,
B.
Serin
,
W. H.
Wright
, and
L. B.
Nesbitt
, “
Superconductivity of isotopes of mercury
,”
Phys. Rev.
78
,
487
(
1950
).
66.
P. B.
Allen
, “
Isotope shift controversies
,”
Nature
335
,
396
(
1988
).
67.
A. M.
Schaeffer
,
S. R.
Temple
,
J. K.
Bishop
et al, “
High-pressure superconducting phase diagram of 6 Li: Isotope effects in dense lithium
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
60
(
2015
).
68.
R.
Khasanov
,
M.
Bendele
,
A.
Bussmann-Holder
, and
H.
Keller
, “
Intrinsic and structural isotope effects in iron-based superconductors
,”
Phys. Rev. B
82
,
212505
(
2010
).
69.
T.
Skoskiewicz
,
A. W.
Szafranski
,
W.
Bujnowski
, and
B.
Baranowski
, “
Isotope effect in the superconducting palladium-hydrogen-deuterium system
,”
J. Phys. C
7
,
2670
(
1974
).
70.
A.
Stucky
,
G. W.
Scheerer
,
Z.
Ren
et al, “
Isotope effect in superconducting n-doped SrTiO3
,”
Sci. Rep.
6
,
37582
(
2016
).
71.
M.
Debessai
,
J. J.
Hamlin
, and
J. S.
Schilling
, “
Comparison of the pressure dependences of Tc in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures
,”
Phys. Rev. B
78
,
064519
(
2008
).
72.
W. L.
McMillan
, “
Transition temperature of strong-coupled superconductors
,”
Phys. Rev.
167
,
331
(
1968
).
73.
P. B.
Allen
and
M. L.
Cohen
,
Phys. Rev.
187
,
525
(
1969
).
74.
A. Y.
Liu
and
M. L.
Cohen
,
Phys. Rev. B
44
,
9678
(
1991
).
75.
W. E.
Pickett
,
B. M.
Klein
, and
D. A.
Papaconstantopoulos
, “
Theoretical prediction of MoN as a high Tc superconductor
,”
Physica B
107
,
667
(
1981
).
76.
J.
Nagamatsu
,
N.
Nakagawa
,
T.
Muranaka
et al, “
Superconductivity at 39 K in magnesium diboride
,”
Nature
410
,
63
(
2001
).
77.
J. M.
An
and
W. E.
Pickett
, “
Superconductivity of MgB2: Covalent bonds driven metallic
,”
Phys. Rev. Lett.
86
,
4366
(
2001
).
78.
H. J.
Choi
,
D.
Roundy
,
H.
Sun
,
M. L.
Cohen
, and
S. G.
Louie
, “
First-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism
,”
Phys. Rev. B
66
,
020513(R)
(
2002
).
79.
H.
Rosner
,
A.
Kitaigorodsky
, and
W. E.
Pickett
, “
Prediction of high Tc superconductivity in hole-doped LiBC
,”
Phys. Rev. Lett.
88
,
127001
(
2002
).
80.
J. K.
Dewhurst
,
S.
Sharma
,
C.
Ambrosch-Draxl
, and
B.
Johansson
, “
First-principles calculation of superconductivity in hole-doped LiBC: T c = 65 K
,”
Phys. Rev. B
68
,
020504(R)
(
2003
).
81.
A.
Lazicki
,
C.-S.
Yoo
,
H.
Cynn
et al, “
Search for superconductivity in LiBC at high pressure
,”
Phys. Rev. B
75
,
054507
(
2007
).
82.
H. J.
Choi
,
S. G.
Louie
, and
M. L.
Cohen
, “
Prediction of superconducting properties of CaB2 using anisotropic Eliashberg theory
,”
Phys. Rev. B
80
,
064503
(
2009
).
83.
S.
Shah
and
A. N.
Kolmogorov
, “
Stability and superconductivity of Ca-B phases at ambient and high pressure
,”
Phys. Rev. B
88
,
014107
(
2013
).
84.
Y.
Quan
and
W. E.
Pickett
, “
Li 2 x BC 3: Prediction of a second MgB2-class high-temperature superconductor
,”
Phys. Rev. B
102
,
144504
(
2020
).
85.
M. J.
Winiarski
,
B.
Wiendloch
,
S.
Golab
et al, “
Superconductivity in CaBi2
,”
Phys. Chem. Chem. Phys.
18
,
21737
(
2016
).
86.
S.
Golab
and
B.
Wiendlocha
, “
Electron-phonon superconductivity in CaBi2 and the role of spin-orbit interaction
,”
Phys. Rev. B
99
,
104520
(
2019
).
87.
M.
Calandra
,
N.
Vast
, and
F.
Mauri
, “
Superconductivity from doping boron icosahedra
,”
Phys. Rev. B
69
,
224505
(
2004
).
88.
J. E.
Moussa
and
M. L.
Cohen
, “
Constraints on Tc for superconductivity in heavily boron-doped diamond
,”
Phys. Rev. B
77
,
064518
(
2008
).
89.
A. D.
Hernández
,
J. A.
Montoya
,
G.
Profeta
, and
S.
Scandolo
, “
First-principles investigation of the electron-phonon interaction in OsN2: Theoretical prediction of superconductivity mediated by N-N covalent bonds
,”
Phys. Rev. B
77
,
092504
(
2008
).
90.
J. E.
Moussa
,
J.
Noffsinger
, and
M. L.
Cohen
, “
Possible thermodynamic stability and superconductivity of antifluorite Be 2 B x C 1 ? x
,”
Phys. Rev. B
78
,
104506
(
2008
).
91.
G.
Savini
,
A. C.
Ferrari
, and
F.
Giustino
, “
First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor
,”
Phys. Rev. Lett.
105
,
037002
(
2010
).
92.
J.
Dai
,
Z.
Li
,
J.
Yang
, and
J.
Hou
, “
A first-principles prediction of two-dimensional superconductivity in pristine B 2 C single layers
,”
Nanoscale
4
,
3032
(
2012
).
93.
D. F.
Shao
,
W. J.
Lu
,
S.
Lin
et al, “
First-principles prediction of layered antiperovskite superconductors A 2 CNi 4 (A = Al, Ga, and Sn)
,”
AIP Adv.
2
,
042167
(
2012
).
94.
D.-H.
Wang
,
H.-Y.
Zhou
,
C.-H.
Hu
et al, “
BaC: A thermodynamically stable layered superconductor
,”
Phys. Chem. Chem. Phys.
16
,
20780
(
2014
).
95.
T.
Bazhirov
,
Y.
Sakai
,
S.
Saito
, and
M. L.
Cohen
, “
Electron-phonon coupling and superconductivity in Li-intercalated layered borocarbide compounds
,”
Phys. Rev. B
89
,
045136
(
2014
).
96.
M.
Gao
,
Z.-Y.
Lu
, and
T.
Xiang
, “
Prediction of phonon-mediated high-temperature superconductivity in Li 3 B 4 C 2
,”
Phys. Rev. B
91
,
045132
(
2015
).
97.
R.
Miao
,
J.
Yang
,
Z.
Bai
et al, “
First-principles prediction of superconductivity in LiBSi 1 x Al x
,”
Int. J. Mod. Phys. B
29
,
1550064
(
2015
).
98.
S.
Yu
,
X.
Jia
,
G.
Frapper
et al, “
Pressure-driven formation and stabilization of superconductive chromium hydrides
,”
Sci. Rep.
5
,
17764
(
2015
).
99.
Y. C.
Zhao
,
S. M.
Zeng
, and
J.
Ni
, “
Superconductivity in two-dimensional boron allotropes
,”
Phys. Rev. B
93
,
014502
(
2016
).
100.
R.
Miao
,
G.
Huang
, and
J.
Yanga
, “
First-principles prediction of MgB2-like NaBC: A more promising high-temperature superconducting material than LiBC
,”
Sol. State Commun.
233
,
30
(
2016
).
101.
N. H.
Shimada
,
E.
Minamitani
, and
S.
Watanabe
, “
Theoretical prediction of phonon-mediated superconductivity with T c 25 K in Li–intercalated hexagonal boron nitride bilayer
,”
Appl. Phys. Express
10
,
093101
(
2017
).
102.
M.
Gao
,
Q.-Z.
Li
,
X.-W.
Yan
et al, “
Prediction of phonon-mediated superconductivity in borophene
,”
Phys. Rev. B
95
,
024505
(
2017
).
103.
Y.
Feng
,
H.
Sun
,
J.
Sun
et al, “
Prediction of phonon-mediated superconductivity in hole-doped black phosphorus
,”
J. Phys.: Condens. Matter
30
,
015601
(
2018
).
104.
R.
Miao
,
Z.
Bai
,
C.
Liu
et al, “
Potentially high-temperature superconductivity in K 1 ? x B 6: A first-principles prediction
,”
Physica C
551
,
16
(
2018
).
105.
L.
Hao
,
X.
Li
,
Y.
Zhang
et al, “
Prediction of Li 2 B novel phases and superconductivity under varying pressures
,”
Comput. Mater. Sci.
158
,
255
(
2019
).
106.
E.
Haque
,
M. A.
Hossain
, and
C.
Stampfl
, “
First-principles prediction of phonon-mediated superconductivity in XBC (X = Mg, Ca, Sr, Ba)
,”
Phys. Chem. Chem. Phys.
21
,
8767
(
2019
).
107.
E.
Haque
,
C.
Stampfl
, and
M.
Anwar Hossain
, “
Prediction of the fundamental properties of novel Be-B-Ta-based ternary compounds from first-principles calculations
,”
Phys. Rev. Mater.
3
,
084804
(
2019
).
108.
D.-L.
Nguyen
,
C.-R.
Hsing
, and
C.-M.
Wei
, “
Theoretical prediction of superconductivity in monolayer CoO2
,”
Nanoscale
11
,
17052
(
2019
).
109.
S.
Kim
,
K.
Kim
,
J.
Koo
et al, “
Pressure-induced phase transitions and superconductivity in magnesium carbides
,”
Sci. Rep.
9
,
20253
(
2019
).
110.
Z.-F.
Ouyang
,
X.-W.
Yan
, and
M.
Gao
, “
Electronic structure, phonons, and high-temperature phonon-mediated superconductivity in lithium-intercalated diamond-like boron compounds
,”
Appl. Phys. Express
13
,
083003
(
2020
).
111.
X.
Liang
,
A.
Bergara
,
Y.
Xie
et al, “
Prediction of superconductivity in pressure-induced new silicon boride phases
,”
Phys. Rev. B
101
,
014112
(
2020
).
112.
Y.
Li
,
H.
Chen
,
G.
Han
et al, “
First-principles investigation of the superconducting properties of MgXB4 (X = Al, Li, Na, K)
,”
Physica C
577
,
1353732
(
2020
).
113.
P.-J.
Chen
and
H.-T.
Jeng
, “
Ambient-pressure high-temperature superconductivity in stoichiometric hydrogen-free covalent compound BSiC2
,”
New J. Phys.
22
,
033046
(
2020
).
114.
J.-N.
Wang
,
X.-W.
Yan
, and
M.
Gao
, “
High-temperature superconductivity in SrB 3 C 3 and BaB 3 C 3 predicted from first-principles anisotropic Migdal-Eliashberg theory
,”
Phys. Rev. B
103
,
144515
(
2021
).
115.
Q.
Yang
,
J.
Lv
,
Q.
Tong
et al, “
Hard and superconducting cubic boron phase via swarm-intelligence structural prediction driven by a machine-learning potential
,”
Phys. Rev. B
103
,
024505
(
2021
).
116.
P.
Modak
,
A. K.
Verma
, and
A. K.
Mishra
, “
Prediction of superconductivity at 70 K in a pristine monolayer of LiBC
,”
Phys. Rev. B
104
,
054504
(
2021
).
117.
L.
Wang
,
M.
Liu
,
J.
Li
et al, “
Topological nodal line and superconductivity of highly thermally stable two-dimensional TiB4
,”
Phys. Rev. B
104
,
195123
(
2021
).
118.
S.
Singh
,
A. H.
Romero
,
J. D.
Mella
et al, “
High-temperature phonon-mediated superconductivity in monolayer M g 2 B 4 C 2
,”
npj Quantum Mater.
7
,
37
(
2022
).
119.
P.
Zhang
,
X.
Li
,
X.
Yang
,
H.
Wang
,
Y.
Yansun
, and
H.
Liu
, “
Path to high-Tc superconductivity via Rb substitution of guest metal atoms in the S r B 3 C 3 clathrate
,”
Phys. Rev. B
105
,
094503
(
2022
).
120.
R.
Miao
,
X.
Hao
,
S.
Wu
,
B.
Li
, and
J.
Yang
, “
First-principles prediction of superconductivity in hole doping of MgCN2
,”
J. Supercond. Novel Magn.
35
,
339
(
2022
).
121.
Z.
Cui
,
Q.
Yang
,
X.
Qu
et al, “
A superconducting boron allotrope featuring anticlinal pentapyramids
,”
J. Mater. Chem. C
10
,
672
(
2022
).
122.
H.-D.
Liu
,
L.
Ya-Ping
,
L.
Yang
et al, “
Theoretical prediction of superconductivity in monolayer B 3 N
,”
Phys. Rev. B
105
,
224501
(
2022
).
123.
Z. P.
Yin
,
S. Y.
Savrasov
, and
W. E.
Pickett
, “
Linear response study of strong electron-phonon coupling in yttrium under pressure
,”
Phys. Rev. B
74
,
094519
(
2006
).
124.
S.
Saha
,
S.
Di Cataldo
, and
M.
Amsler
, “
Wolfgang von der Linden, and Lilia Boeri, “High-temperature conventional superconductivity in the boron-carbon system: Material trends
,”
Phys. Rev. B
102
,
024519
(
2020
).
125.
M. L.
Cohen
, “
Predicting and explaining Tc and other properties of BCS superconductors
,”
Mod. Phys. Lett. B
24
,
2755
(
2010
).
126.
L. N.
Oliveira
,
E. K. U.
Gross
, and
W.
Kohn
, “
Density-functional theory for superconductors
,”
Phys. Rev. Lett.
60
,
2430
(
1988
).
127.
M.
Lüders
,
M. A. L.
Marques
,
N. N.
Lathiotakis
et al, “
Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals
,”
Phys. Rev. B
72
,
024545
(
2005
).
128.
M. A. L.
Marques
,
M.
Lüders
,
N. N.
Lathiotakis
et al, “
Ab initio theory of superconductivity. II. Application to elemental metals
,”
Phys. Rev. B
72
,
024546
(
2005
).
129.
A.
Sanna
,
J. A.
Flores-Livas
,
A.
Davydov
et al, “
Ab initio prediction of pressure-induced superconductivity in potassium
,”
Phys. Rev. B
73
,
144512
(
2006
).
130.
J. A.
Flores-Livas
,
A.
Sanna
, and
E. K.
Gross
, “
High temperature superconductivity in sulfur and selenium hydrides at high pressure
,”
Eur. Phys. J. B
89
,
63
(
2016
).
131.
A.
Sanna
,
C.
Franchini
,
A.
Floris
et al, “
Ab initio Eliashberg Theory: making genuine predictions of superconducting features
,”
J. Phys. Soc. Jpn.
87
,
041012
(
2018
).
132.
J. A.
Flores-Livas
and
A.
Sanna
, “
Superconductivity in intercalated group-IV honeycomb structures
,”
Phys. Rev. B
91
,
054508
(
2015
).
133.
B. T.
Matthias
, “
The search for high-temperature superconductors
,”
Phys. Today
24
(
8
),
23
(
1971
).
134.
N. W.
Ashcroft
, “
Hydrogen dominant metallic alloys: High temperature superconductors?
,”
Phys. Rev. Lett.
92
,
187002
(
2004
).
135.
V. V.
Struzhkin
, “
Superconductivity in compressed hydrogen-rich materials: Pressing on hydrogen
,”
Physica C
514
,
77
(
2015
).
136.
J.
Feng
,
W.
Grochala
,
T.
Jaron
et al, “
Structures and potential superconductivity in SiH4 at high pressure: En route to “metallic hydrogen
,”
Phys. Rev. Lett.
96
,
017006
(
2006
).
137.
C. J.
Pickard
and
R. J.
Needs
, “
High-pressure phases of silane
,”
Phys. Rev. Lett.
97
,
045504
(
2006
).
138.
Y.
Yao
,
J. S.
Tse
,
Y.
Ma
et al, “
Superconductivity in high-pressure SiH4
,”
Europhys. Lett.
78
,
37003
(
2007
).
139.
M. I.
Eremets
,
I. A.
Trojan
,
S. A.
Medvedev
et al, “
Superconductivity in hydrogen dominant materials: Silane
,”
Science
319
,
1506
(
2008
).
140.
O.
Degtyareva
,
J. E.
Proctor
,
C. L.
Guillaume
et al, “
Formation of transition metal hydrides at high pressures
,”
Solid State Commun.
149
,
1583
(
2009
).
141.
T. A.
Strobel
,
A. F.
Goncharov
,
C. T.
Seagle
et al, “
High-pressure study of silane to 150 GPa
,”
Phys. Rev. B
83
,
144102
(
2011
).
142.
K.
Shimizu
,
M.
Einaga
,
M.
Sakata
et al, “
Superconductivity and structural studies of highly compressed hydrogen sulfide
,”
Physica C
552
,
27
(
2018
).
143.
C. J.
Pickard
,
I.
Errea
, and
M. I.
Eremets
, “
Superconducting hydrides under pressure
,”
Ann. Rev. Condens. Matter Phys.
11
,
57
(
2020
); and references therein.
144.
D.
Duan
,
Y.
Liu
,
Y.
Ma
et al, “
Structure and superconductivity of hydrides at high pressures
,”
Natl. Sci. Rev.
4
,
121
(
2017
); and references therein.
145.
J. S.
Tse
,
Y.
Yao
, and
K.
Tanaka
, “
Novel superconductivity in metallic SnH4 under high pressure
,”
Phys. Rev. Lett.
98
,
117004
(
2007
).
146.
G.
Gao
,
A. R.
Oganov
,
A.
Bergara
et al, “
Superconducting high pressure phase of germane
,”
Phys. Rev. Lett.
101
,
107002
(
2008
).
147.
D. Y.
Kim
,
R. H.
Scheicher
, and
R.
Ahuja
, “
Predicted high-temperature superconducting state in the hydrogen-dense transition-metal hydride YH3 at 40 K and 17.7 GPa
,”
Phys. Rev. Lett.
103
,
077002
(
2009
).
148.
A. K. M. A.
Islam
,
M. M.
Ali
, and
M. L.
Ali
, “
AlH3 between 65 and 110 GPa: Implications of electronic band and phonon structures
,”
Physica C
470
,
403
(
2010
).
149.
D. Y.
Kim
,
R. H.
Scheicher
,
H-k
Mao
,
T. W.
Kang
, and
R.
Ahuja
, “
General trend for pressurized superconductinghydrogen-dense materials
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
2793
(
2010
).
150.
G.
Gao
,
H.
Wang
,
A.
Bergara
et al, “
Metallic and superconducting gallane under high pressure
,”
Phys. Rev. B
84
,
064118
(
2011
).
151.
H.
Wang
,
H.
Wang
,
J. S.
Tse
et al, “
Superconductive sodalite-like clathrate calcium hydride at high pressures
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
6463
(
2012
).
152.
D.
Zhou
,
X.
Jin
,
X.
Meng
et al, “
Ab initio study revealing a layered structure in hydrogen-rich KH6 under high pressure
,”
Phys. Rev. B
86
,
014118
(
2012
).
153.
J.
Hooper
,
B.
Altintas
,
A.
Shamp
, and
E.
Zurek
, “
Polyhydrides of the alkaline earth metals: A look at the extremes under pressure
,”
J. Phys. Chem. C
117
,
2982
(
2013
).
154.
G.
Gao
,
R.
Hoffmann
,
N. W.
Ashcroft
et al, “
Theoretical study of the ground-state structures and properties of niobium hydrides under pressure
,”
Phys. Rev. B
88
,
184104
(
2013
).
155.
D. C.
Lonie
,
J.
Hooper
,
B.
Altintas
, and
E.
Zurek
, “
Metallization of magnesium polyhydrides under pressure
,”
Phys. Rev. B
87
,
054107
(
2013
).
156.
Y.
Xie
,
Q.
Li
,
A. R.
Oganov
, and
H.
Wang
, “
Superconductivity of lithium-doped hydrogen under high pressure
,”
Acta Crystallogr., Sect. C
70
,
104
(
2014
).
157.
S.
Yu
,
Q.
Zeng
,
A. R.
Oganov
et al, “
Exploration of stable compounds, crystal structures, and superconductivity in the Be-H system
,”
AIP Adv.
4
,
107118
(
2014
).
158.
Y.
Li
,
J.
Hao
,
H.
Liu
et al, “
The metallization and superconductivity of dense hydrogen sulfide
,”
J. Chem. Phys.
140
,
174712
(
2014
).
159.
D.
Duan
,
Y.
Liu
,
F.
Tian
et al, “
Pressure-induced metallization of dense ( H 2 2 S ) 2 H 2 with high-Tc superconductivity
,”
Sci. Rep.
4
,
6968
(
2015
).
160.
A. P.
Drozdov
,
M. I.
Eremets
, and
I. A.
Troyan
, “
Conventional superconductivity at 190 K at high pressures
,” arXiv:1412.0460 (
2014
).
161.
A. P.
Drozdov
,
M. I.
Eremets
,
I. A.
Troyan
,
V.
Ksenofontov
, and
S. I.
Shylin
, “
Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system
,”
Nature
525
,
73
76
(
2015
).
162.
I.
Osmond
,
O.
Moulding
,
S.
Cross
et al, “
Clean-limit superconductivity in Im3m H 3 S synthesized from sulfur and hydrogen donor ammonia borane
,”
Phys. Rev. B
105
,
L220502
(
2022
).
163.
A. P.
Drozdov
,
M. I.
Eremets
, and
I. A.
Troyan
, “
Superconductivity above 100 K in PH3 at high pressures
,” arXiv:1508.06224 (
2015
).
164.
M.
Somayazulu
,
M.
Ahart
,
A. K.
Mishra
et al, “
Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures
,”
Phys. Rev. Lett.
122
,
027001
(
2019
).
165.
A. P.
Drozdov
,
P. P.
Kong
,
V. S.
Minkov
et al, “
Superconductivity at 250 K in lanthanum hydride under high pressures
,”
Nature
569
,
528
531
(
2019
).
166.
F.
Hong
,
L.
Yang
,
P.
Shan
et al, “
Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures
,”
Chin. Phys. Lett.
37
,
107401
(
2020
).
167.
A. D.
Grockowiak
,
M.
Ahart
,
T.
Helm
et al, “
Hot hydride superconductivity above 550 K
,” arXiv:2006.03004 (
2020
).
168.
P. P.
Kong
,
V. S.
Minkov
,
M. A.
Kuzovnikov
et al, “
Superconductivity up to 243 K in yttrium hydrides under high pressure
,” arXiv:1909.10482 (
2019
).
169.
Y. A.
Troyan
,
D. V.
Semenok
,
A. G.
Kvashnin
et al, “
Anomalous high-temperature superconductivity in YH6
,” arXiv:1908.01534 (
2019
).
170.
E.
Snider
,
N.
Dasenbrock-Gammon
,
R.
McBride
et al, “
Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures
,”
Phys. Rev. Lett.
126
,
117003
(
2021
).
171.
D. V.
Semenok
,
A. G.
Kvashnin
,
A. G.
Ivanova
et al, “
Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties
,”
Mater. Today
33
,
36
44
(
2020
).
172.
E.
Snider
,
N.
Dasenbrock-Gammon
,
R.
McBride
et al, “
Room-temperature superconductivity in a carbonaceous sulfur hydride
,”
Nature
586
,
373
(
2020
).
173.
G. A.
Smith
,
I. E.
Collings
,
E.
Snider
et al, “
Lower pressure phases and metastable states of superconducting photo-induced carbonaceous sulfur hydride
,” arXiv:2111.15051 (
2021
).
174.
Z.
Li
,
X.
He
,
C.
Zhang
et al, “
Superconductivity above 200 K discovered in superhydrides of calcium
,”
Nat Commun
13
,
2863
(
2022
).
175.
L.
Ma
,
K.
Wang
,
Y.
Xie
et al, “
High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa
,”
Phys. Rev. Lett.
128
,
167001
(
2022
).
176.
F.
Hong
,
P. F.
Shan
,
L. X.
Yang
et al, “
Superconductivity at 70 K in tin hydride SnHx under high pressure
,” arXiv:2101.02846 (
2021
).
177.
W.
Chen
,
D. V.
Semenok
,
X.
Huang
et al, “
High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar
,”
Phys. Rev. Lett.
127
,
117001
(
2021
).
178.
C.
Zhang
,
X.
He
,
Z.
Li
et al, “
Superconductivity in zirconium polyhydrides with Tc above 70 K
,”
Sci. Bull.
67
,
907
(
2022
).
179.
D. V.
Semenok
,
I. A.
Troyan
,
A. G.
Ivanova
et al, “
Superconductivity at 253 K in lanthanum-yttrium ternary hydrides
,”
Mater. Today
48
,
18
(
2021
).
180.
W.
Chen
,
X.
Huang
,
D. V.
Semenok
et al, “
Enhancement of the superconducting critical temperature realized in the La-Ce-H system at moderate pressures
,” arXiv:2203.14353 (
2022
).
181.
J.
Bi
,
Y.
Nakamoto
,
K.
Shimizu
et al, “
Efficient route to achieve superconductivity improvement via substitutional La-Ce alloy superhydride at high pressure
,” arXiv:2204.04623 (
2022
).
182.
D. V.
Semenok
,
I. A.
Troyan
,
A. V.
Sadakov
et al, “
Effect of paramagnetic impurities on superconductivity in polyhydrides: S-wave order parameter in Nd-doped LaH10
,” arXiv:2203.06500 (
2022
).
183.
J. A.
Flores-Livas
,
L.
Boeria
,
A.
Sanna
et al, “
A perspective on conventional high-temperature superconductors at high pressure: Methods and materials
,”
Phys. Rep.
856
,
1–78
(
2020
).
184.
G.
Gao
,
L.
Wang
,
M.
Li
et al, “
Superconducting binary hydrides: Theoretical predictions and experimental progresses
,”
Mater. Today Phys.
21
,
100546
(
2021
).
185.
K. P.
Hilleke
and
E.
Zurek
, “
Tuning Chemical precompression: theoretical design and crystal chemistry of novel hydrides in the quest for warm and light superconductivity at ambient pressures
,”
J. Appl. Phys.
131
,
070901
(
2022
).
186.
A. M.
Shipley
,
M. J.
Hutcheon
,
R. J.
Needs
, and
C. J.
Pickard
, “
High-throughput discovery of high-temperature conventional superconductors
,”
Phys. Rev. B
104
,
054501
(
2021
).
187.
H.-Y.
Lv
,
S.-Y.
Zhang
,
M.-H.
Li
et al, “
Metallization and superconductivity in methane doped by beryllium at low pressure
,”
Phys. Chem. Chem. Phys.
22
,
1069
(
2020
).
188.
Z.
Zhang
,
T.
Cui
,
M. J.
Hutcheon
et al, “
Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure
,”
Phys. Rev. Lett.
128
,
047001
(
2022
).
189.
S.
Di Cataldo
and
C.
Heil
, “
Wolfgang von der Linden, and Lilia Boeri, “LaBH8: Towards high-Tc low-pressure superconductivity in ternary superhydrides
,”
Phys. Rev. B
104
,
L020511
(
2021
).
190.
M.-J.
Jiang
,
H.-L.
Tian
,
Y.-L.
Hai
et al, “
Phonon-mediated low-pressure superconductivity in ternary hydride Ba CH 4
,”
ACS Appl. Electron. Mater.
3
,
4172
(
2021
).
191.
I. A.
Kruglov
,
A. G.
Kvashnin
,
A. F.
Goncharov
et al, “
Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity
,”
Sci. Adv.
4
,
eaat9776
(
2018
).
192.
M.
Gao
,
X.-W.
Yan
,
Z.-Y.
Lu
et al, “
Phonon-mediated high-temperature superconductivity in the ternary borohydride KB 2 H 8 under pressure near 12 GPa
,”
Phys. Rev. B
104
,
L100504
(
2021
).
193.
Y.
Liu
,
Q.
Fan
,
J.
Yang
et al, “
Predicted high-temperature superconductivity in rare earth hydride ErH2 at moderate pressure
,” arXiv:2206.02484 (
2022
).
194.
R.
Lucrezi
,
S. D.
Cataldo
,
W.
von der Linden
et al, “
In-silico synthesis of lowest-pressure high-Tc ternary superhydrides
,”
npj Comput. Mater.
8
,
119
(
2022
).
195.
Y.
Kopelevich
,
R. R.
da Silva
, and
B. C.
Camargo
, “
Unstable and elusive superconductors
,”
Physica C
514
,
237
(
2015
); and references therein.
196.
T.
Ogushi
and
Y.
Osono
, “
Superconductivity in Nb-Ge-AI-O films above 44 K
,”
Appl. Phys. Lett.
48
,
1167
(
1986
).
197.
P.
Tripodi
,
D. D.
Gioacchino
, and
J. D.
Vinko
, “
A review of high temperature superconducting property of PdH system
,”
Int. J. Mod. Phys. B
21
,
3343
(
2007
).
198.
H. M.
Syed
,
T. J.
Gould
,
C. J.
Webb
, and
E. M.
Gray
, “
Superconductivity in palladium hydride and deuteride at 52–61 K
,” arXiv:1608.01774 (
2016
).
199.
J. E.
Hirsch
and
F.
Marsiglio
, “
Unusual width of the superconducting transition in a hydride
,”
Nature
596
,
E9
(
2021
).
200.
M.
Dogan
and
M. L.
Cohen
, “
Anomalous behavior in high-pressure carbonaceous sulfur hydride
,”
Physica C
583
,
1353851
(
2021
).
201.
J. E.
Hirsch
and
F.
Marsiglio
, “
Nonstandard superconductivity or no superconductivity in hydrides under high pressure
,”
Phys. Rev. B
103
,
134505
(
2021
).
202.
J. E.
Hirsch
and
F.
Marsiglio
, “
Absence of high temperature superconductivity in hydrides under pressure
,” arXiv:2010.10307 (
2020
).
203.
J. E.
Hirsch
, “
Comment on “Room-temperature superconductivity in a carbonaceous sulfur hydride,” by Elliot Snider et al.
,
Europhys. Lett.
137
,
36001
(
2022
).
204.
J. E.
Hirsch
and
D.
van der Marel
, “
Incompatibility of published ac magnetic susceptibility of a room temperature superconductor with measured raw data
,”
Matter Radiat. Extremes
7
,
048401
(
2022
).
205.
D.
van der Marel
and
J. E.
Hirsch
, “
Extended Comment on Nature 586, 373 (2020) by E. Snider et al.
,” arXiv:2201.07686 (
2022
).
206.
X.
Huang
,
X.
Wang
,
D.
Duan
et al, “
High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility
,”
Nat. Sci. Rev.
6
,
713
(
2019
).
207.
J. E.
Hirsch
, “
Faulty evidence for superconductivity in ac magnetic susceptibility of sulfur hydride under pressure
,”
Natl. Sci. Rev.
9
,
nwac086
(
2022
).
208.
F.
Capitani
,
B.
Langerome
,
J.-B.
Brubach
et al, “
Spectroscopic evidence of a new energy scale for superconductivity in H 3 S
,”
Nat Phys.
13
,
859
(
2017
).
209.
J. E.
Hirsch
and
F.
Marsiglio
, “
Absence of evidence of superconductivity in sulfur hydride in optical reflectance experiments
,”
Nat. Phys.
(published online
2021
).
210.
I.
Troyan
,
A.
Gavriliuk
,
R.
Rüffer
et al, “
Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering
,”
Science
351
,
1303
(
2016
).
211.
R.
Prozorov
and
S. L.
Bud'ko
, “
On the analysis of the tin-inside-H2S Mossbauer experiment
,” arXiv:2204.07847 (
2022
).
212.
J. E.
Hirsch
and
F.
Marsiglio
, “
Absence of magnetic evidence for superconductivity in hydrides under high pressure
,”
Physica C
584
,
1353866
(
2021
).
213.
J. E.
Hirsch
, see https://osf.io/preprints/af8gw/ for “
Comment on “On the Analysis of the Tin-Inside-H2S Mossbauer Experiment
,” (
2022
).
214.
V.
Minkov
,
S. L.
Budko
,
F. F.
Balakirev
et al, “
Magnetic field screening in hydrogen-rich high-temperature superconductors
,”
Nat Commun
13
,
3194
(
2022
).
215.
J. E.
Hirsch
and
F.
Marsiglio
, “
Clear evidence against superconductivity in hydrides under high pressure
,”
Matter Radiat. Extremes
7
,
058401
(
2022
).
216.
M. I.
Eremets
,
V. S.
Minkov
,
A. P.
Drozdov
et al, “
High-temperature superconductivity in hydrides: Experimental evidence and details
,”
J. Supercond. Novel Magn.
35
,
965
(
2022
).
217.
M.
Du
,
W.
Zhao
,
T.
Cui
, and
D.
Duan
, “
Compressed superhydrides: The road to room temperature superconductivity
,”
J. Phys.: Condens. Matter
34
(
4
),
173001
(
2022
).
218.
S.
Saha
,
S.
Di Cataldo
,
F.
Giannessi
et al, “
mapping superconductivity in high-pressure hydrides: The superhydra project
,” arXiv:2205.02554 (
2022
).
219.
L.
Boeri
, “
Understanding novel superconductors with Ab initio calculations
,” in
Handbook of Materials Modeling
, edited by
W.
Andreoni
and
S.
Yip
(
Springer
,
Cham
,
2020
).
220.
D.
Duan
,
H.
Yu
,
H.
Xie
, and
T.
Cui
, “
Ab Initio approach and its impact on superconductivity
,”
J. Supercond. Novel Magn.
32
,
53
(
2019
).
221.
L.
Boeri
and
G. B.
Bachelet
, “
Viewpoint: The road to room-temperature conventional superconductivity
,”
J. Phys.: Condens. Matter
31
,
234002
(
2019
).
222.
S. R.
Xie
,
Y.
Quan
,
A. C.
Hire
et al, “
Machine learning of superconducting critical temperature from Eliashberg theory
,”
npj Comput Mater.
8
,
14
(
2022
).
223.
S.
Di Cataldo
,
W.
von der Linden
, and
L.
Boeri
, “
Phase diagram and superconductivity of calcium borohyrides at extreme pressures
,”
Phys. Rev. B
102
,
014516
(
2020
).
224.
R.
Micnas
,
J.
Ranninger
, and
S.
Robaszkiewicz
, “
Superconductivity in narrow-band systems with local nonretarded attractive interactions
,”
Rev. Mod. Phys.
62
,
113
(
1990
).
225.
W. L.
McMillan
and
J. M.
Rowell
, “
Tunneling and strong-coupling superconductivity
,” in
Superconductivity
, edited by
R. D.
Parks
and
M.
Dekker
(
CRC Press
,
New York
,
1969
), Vol.
I
, p.
561
.
226.
J. E.
Hirsch
, “
BCS theory of superconductivity: It is time to question its validity
,”
Phys. Scr.
80
,
035702
(
2009
).
227.
J. E.
Hirsch
, “
Hole superconductivity xOr hot hydride superconductivity
,”
J. Appl. Phys.
130
,
181102
(
2021
); and references therein.
228.
J. E.
Hirsch
,
Superconductivity Begins with H
(
World Scientific
,
Singapore
,
2020
).
229.
J. E.
Hirsch
, “
Why only hole conductors can be superconductors
,”
Proc. SPIE
10105
,
101051V
(
2017
).
230.
I. M.
Chapnik
, “
On the empirical correlation between the superconducting Tc and the Hall coefficient
,”
Phys. Lett. A
72
,
255
256
(
1979
).
231.
J. E.
Hirsch
, “
Correlations between normal-state properties and superconductivity
,”
Phys. Rev. B
55
,
9007
(
1997
).
232.
J. P.
Carbotte
and
R. C.
Dynes
, “
Calculation of the superconducting transition temperature in aluminium
,”
Phys. Lett. A
25
,
685
(
1967
).
233.
H.
Liu
,
I. I.
Naumov
,
R.
Hoffmann
,
N. W.
Ashcroft
, and
R. J.
Hemley
, “
Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
6990
(
2017
).
234.
F.
Peng
,
Y.
Sun
,
C. J.
Pickard
et al, “
Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity
,”
Phys. Rev. Lett.
119
,
107001
(
2017
).
235.
A. R.
Oganova
and
C. W.
Glass
, “
Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
,”
J. Chem. Phys.
124
,
244704
(
2006
).
236.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
,
094116
(
2010
).
237.
C. J.
Pickard
and
R. J.
Needs
, “
Ab initio random structure searching
,”
J. Phys.: Condens. Matter
23
,
053201
(
2011
).
238.
D. C.
Lonie
and
E.
Zurek
, “
XTALOPT version r7: An open-source evolutionary algorithm for crystal structure prediction
,”
Comput. Phys. Commun.
182
,
2305
(
2011
).
239.
D. A.
Papaconstantopoulos
,
L. L.
Boyer
,
B. M.
Klein
et al, “
Calculations of the superconducting properties of 32 metals with Z 49
,”
Phys. Rev. B
15
,
4221
(
1977
).
240.
A.
Davydov
,
A.
Sanna
,
C.
Pellegrini
et al, “
Ab initio theory of plasmonic superconductivity within the Eliashberg and density-functional formalisms
,”
Phys. Rev. B
102
,
214508
(
2020
).
241.
M.
Kawamura
,
Y.
Hizume
, and
T.
Ozaki
, “
Benchmark of density functional theory for superconductors in elemental materials
,”
Phys. Rev. B
101
,
134511
(
2020
).
242.
R.
Akashi
and
R.
Arita
, “
Development of density-functional theory for a plasmon-assisted superconducting state: application to lithium under high pressures
,”
Phys. Rev. Lett.
111
,
057006
(
2013
).
243.
F.
Essenberger
,
A.
Sanna
,
A.
Linscheid
et al, “
Superconducting pairing mediated by spin fluctuations from first principles
,”
Phys. Rev. B
90
,
214504
(
2014
).
244.
T.
Nomoto
,
M.
Kawamura
,
T.
Koretsune
et al, “
Microscopic characterization of the superconducting gap function in Sn 1 ? x In x Te
,”
Phys. Rev. B
101
,
014505
(
2020
).
245.
S. V.
Vonsovsky
,
Y. A.
Izyumov
, and
E. Z.
Kurmaev
, “
Superconductivity of Transition Metals: Their Alloys and Compounds
, Springer Series in Solid-State Sciences, edited by
M.
Cardona
,
P.
Fulde
, and
H. J.
Queisser
(
Springer
,
Berlin
,
1982
).
246.
A. R.
Moodenbaugh
,
D. C.
Johnston
,
R.
Viswanathan
et al, “
Superconductivity of transition metal sulfides, selenides, and phosphides with the NaCI structure
,”
J. Low Temp. Phys.
33
,
175
(
1978
).
247.
A. R.
Moodenbaugh
,
D. C.
Johnston
, and
R.
Viswanathan
, “
Superconductivity in two NaCl structure compounds: α ZrP and ScS 1 + x
,”
Mater. Res. Bull.
9
,
1671
(
1974
).
248.
D.
Rainer
, “
First principles calculations of Tc in superconductors
,”
Physica B
109–110
,
1671
(
1982
).
249.
O. Gibbons
, “
The Silver Swan
,” in
First Set of Madrigals and Motets of 5 parts
(
1612
); available at https://en.wikipedia.org/wiki/The_Silver_Swan_(madrigal).
250.
V. S.
Minkov
,
V.
Ksenofontov
,
S. L.
Budko
,
E. F.
Talantsev
, and
M. I.
Eremets
, “
Trapped magnetic flux in hydrogen-rich high-temperature superconductors
,” arXiv:2206.14108 (
2022
).
251.
J. E.
Hirsch
and
F.
Marsiglio
, “
Flux trapping in superconducting hydrides under high pressure
,”
Physica C
589
,
1353916
(
2021
).
252.
J. E.
Hirsch
and
F.
Marsiglio
, “
Evidence against superconductivity in flux trapping experiments on hydrides under high pressure
,”
J Supercond. Nov. Magn.
(published online,
2022
).
You do not currently have access to this content.