Topological non-reciprocity provides a robust approach to control the wave field. To realize reversible topological non-reciprocity in chiral metamaterials, researchers usually rely on reversing angular momentum bias of the circulation flow, time reversing the spatiotemporal modulation, and so on. Here, we demonstrate that switching Poisson's ratio from positive to negative can reverse the topological non-reciprocity by mechanically stretching and compressing a chiral acoustic metamaterial. We find that the positive–negative switch of Poisson's ratio is associated with the topological phase transition of the acoustic lattice, which is manifested as the reversed propagation of topological edge modes. The reversed topological non-reciprocity of metamaterials is attributed to the transmission switch of the three-port chiral unit. Finally, we propose a design of topological wave splitters, in which transmission directions are adjusted by the Poisson's ratio of the device. Our results indicate that the Poisson's ratio of metamaterials can introduce peculiar topological properties and bring potential applications for wave isolators, modulators, and circulators.

1.
S.
Mittal
,
J.
Fan
,
S.
Faez
,
A.
Migdall
,
J. M.
Taylor
, and
M.
Hafezi
, “
Topologically robust transport of photons in a synthetic gauge field
,”
Phys. Rev. Lett.
113
,
087403
(
2014
).
2.
C.
He
,
X.
Ni
,
H.
Ge
,
X.-C.
Sun
,
Y.-B.
Chen
,
M.-H.
Lu
,
X.-P.
Liu
, and
Y.-F.
Chen
, “
Acoustic topological insulator and robust one-way sound transport
,”
Nat. Phys.
12
,
1124
1129
(
2016
).
3.
R.
Fleury
,
A. B.
Khanikaev
, and
A.
Alu
, “
Floquet topological insulators for sound
,”
Nat. Commun.
7
,
11744
(
2016
).
4.
J.
Lu
,
C.
Qiu
,
L.
Ye
,
X.
Fan
,
M.
Ke
,
F.
Zhang
, and
Z.
Liu
, “
Observation of topological valley transport of sound in sonic crystals
,”
Nat. Phys.
13
,
369
374
(
2017
).
5.
Y.-X.
Xiao
,
G.
Ma
,
Z.-Q.
Zhang
, and
C. T.
Chan
, “
Topological subspace-induced bound state in the continuum
,”
Phys. Rev. Lett.
118
,
166803
(
2017
).
6.
B.-I.
Popa
and
S. A.
Cummer
, “
Non-reciprocal and highly nonlinear active acoustic metamaterials
,”
Nat. Commun.
5
,
3398
(
2014
).
7.
N.
Boechler
,
G.
Theocharis
, and
C.
Daraio
, “
Bifurcation-based acoustic switching and rectification
,”
Nat. Mater.
10
,
665
668
(
2011
).
8.
A.
Darabi
and
M. J.
Leamy
, “
Tunable nonlinear topological insulator for acoustic waves
,”
Phys. Rev. Appl.
12
,
044030
(
2019
).
9.
C.
Rasmussen
,
L.
Quan
, and
A.
Alù
, “
Acoustic nonreciprocity
,”
J. Appl. Phys.
129
,
210903
(
2021
).
10.
Y.
Long
,
J.
Ren
, and
H.
Chen
, “
Unsupervised manifold clustering of topological phononics
,”
Phys. Rev. Lett.
124
,
185501
(
2020
).
11.
Y.
Long
,
D.
Zhang
,
C.
Yang
,
J.
Ge
,
H.
Chen
, and
J.
Ren
, “
Realization of acoustic spin transport in metasurface waveguides
,”
Nat. Commun.
11
,
4716
(
2020
).
12.
L.
Yu
,
H.
Xue
, and
B.
Zhang
, “
Antichiral edge states in an acoustic resonator lattice with staggered air flow
,”
J. Appl. Phys.
129
,
235103
(
2021
).
13.
R.
Fleury
,
D. L.
Sounas
,
C. F.
Sieck
,
M. R.
Haberman
, and
A.
Alù
, “
Sound isolation and giant linear nonreciprocity in a compact acoustic circulator
,”
Science
343
,
516
519
(
2014
).
14.
Y.
Ding
,
Y.
Peng
,
Y.
Zhu
,
X.
Fan
,
J.
Yang
,
B.
Liang
,
X.
Zhu
,
X.
Wan
, and
J.
Cheng
, “
Experimental demonstration of acoustic Chern insulators
,”
Phys. Rev. Lett.
122
,
014302
(
2019
).
15.
Z.
Yang
,
F.
Gao
,
X.
Shi
,
X.
Lin
,
Z.
Gao
,
Y.
Chong
, and
B.
Zhang
, “
Topological acoustics
,”
Phys. Rev. Lett.
114
,
114301
(
2015
).
16.
D. L.
Sounas
,
C.
Caloz
, and
A.
Alu
, “
Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials
,”
Nat. Commun.
4
,
2407
(
2013
).
17.
A. B.
Khanikaev
,
R.
Fleury
,
S. H.
Mousavi
, and
A.
Alu
, “
Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice
,”
Nat. Commun.
6
,
8260
(
2015
).
18.
Y.-G.
Peng
,
C.-Z.
Qin
,
D.-G.
Zhao
,
Y.-X.
Shen
,
X.-Y.
Xu
,
M.
Bao
,
H.
Jia
, and
X.-F.
Zhu
, “
Experimental demonstration of anomalous Floquet topological insulator for sound
,”
Nat. Commun.
7
,
13368
(
2016
).
19.
X.
Ni
,
C.
He
,
X.-C.
Sun
,
X.-P.
Liu
,
M.-H.
Lu
,
L.
Feng
, and
Y.-F.
Chen
, “
Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow
,”
New J. Phys.
17
,
053016
(
2015
).
20.
Y.
Chen
,
X.
Li
,
H.
Nassar
,
A. N.
Norris
,
C.
Daraio
, and
G.
Huang
, “
Nonreciprocal wave propagation in a continuum-based metamaterial with space-time modulated resonators
,”
Phys. Rev. Appl.
11
,
064052
(
2019
).
21.
B.
Liang
,
X.
Guo
,
J.
Tu
,
D.
Zhang
, and
J.
Cheng
, “
An acoustic rectifier
,”
Nat. Mater.
9
,
989
992
(
2010
).
22.
C.
Coulais
,
A.
Sabbadini
,
F.
Vink
, and
M.
van Hecke
, “
Multi-step self-guided pathways for shape-changing metamaterials
,”
Nature
561
,
512
515
(
2018
).
23.
J.-P.
Xia
,
D.
Jia
,
H.-X.
Sun
,
S.-Q.
Yuan
,
Y.
Ge
,
Q.-R.
Si
, and
X.-J.
Liu
, “
Programmable coding acoustic topological insulator
,”
Adv. Mater.
30
,
1805002
(
2018
).
24.
C.
Galland
,
R.
Ding
,
N. C.
Harris
,
T.
Baehr-Jones
, and
M.
Hochberg
, “
Broadband on-chip optical non-reciprocity using phase modulators
,”
Opt. Express
21
,
14500
14511
(
2013
).
25.
Y.
Wang
,
B.
Yousefzadeh
,
H.
Chen
,
H.
Nassar
,
G.
Huang
, and
C.
Daraio
, “
Observation of nonreciprocal wave propagation in a dynamic phononic lattice
,”
Phys. Rev. Lett.
121
,
194301
(
2018
).
26.
D. L.
Sounas
and
A.
Alu
, “
Non-reciprocal photonics based on time modulation
,”
Nat. Photonics
11
,
774
783
(
2017
).
27.
L. M.
Nash
,
D.
Kleckner
,
A.
Read
,
V.
Vitelli
,
A. M.
Turner
, and
W. T.
Irvine
, “
Topological mechanics of gyroscopic metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
14495
14500
(
2015
).
28.
Y.
Sun
and
N.
Pugno
, “
Hierarchical fibers with a negative Poisson's ratio for tougher composites
,”
Mater.
6
,
699
712
(
2013
).
29.
Y.
Prawoto
, “
Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio
,”
Comput. Mater. Sci.
58
,
140
153
(
2012
).
30.
J. U.
Surjadi
,
L.
Gao
,
H.
Du
,
X.
Li
,
X.
Xiong
,
N. X.
Fang
, and
Y.
Lu
, “
Mechanical metamaterials and their engineering applications
,”
Adv. Eng. Mater.
21
,
1800864
(
2019
).
31.
Z.
Gao
,
X.
Dong
,
N.
Li
, and
J.
Ren
, “
Novel two-dimensional silicon dioxide with in-plane negative Poisson's ratio
,”
Nano Lett.
17
,
772
777
(
2017
).
32.
B. G.-G.
Chen
,
N.
Upadhyaya
, and
V.
Vitelli
, “
Nonlinear conduction via solitons in a topological mechanical insulator
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
13004
13009
(
2014
).
33.
D.
Zhang
,
J.
Ren
,
T.
Zhou
, and
B.
Li
, “
Dark state, zero-index and topology in phononic metamaterials with negative mass and negative coupling
,”
New J. Phys.
21
,
093033
(
2019
).
34.
J.
Paulose
,
B. G.-G.
Chen
, and
V.
Vitelli
, “
Topological modes bound to dislocations in mechanical metamaterials
,”
Nat. Phys.
11
,
153
156
(
2015
).
35.
G. N.
Greaves
,
A.
Greer
,
R. S.
Lakes
, and
T.
Rouxel
, “
Poisson's ratio and modern materials
,”
Nat. Mater.
10
,
823
837
(
2011
).
36.
C.
Kane
and
T.
Lubensky
, “
Topological boundary modes in isostatic lattices
,”
Nat. Phys.
10
,
39
45
(
2014
).
37.
Y.
Poo
,
R.-X.
Wu
,
Z.
Lin
,
Y.
Yang
, and
C. T.
Chan
, “
Experimental realization of self-guiding unidirectional electromagnetic edge states
,”
Phys. Rev. Lett.
106
,
093903
(
2011
).
38.
F.
Liu
,
H.-Y.
Deng
, and
K.
Wakabayashi
, “
Helical topological edge states in a quadrupole phase
,”
Phys. Rev. Lett.
122
,
086804
(
2019
).
39.
Z.-K.
Lin
,
S.-Q.
Wu
,
H.-X.
Wang
, and
J.-H.
Jiang
, “
Higher-order topological spin Hall effect of sound
,”
Chin. Phys. Lett.
37
,
074302
(
2020
).
40.
F. D. M.
Haldane
, “
Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly
,’”
Phys. Rev. Lett.
61
,
2015
2018
(
1988
).
41.
Y.-T.
Tan
,
L.-Q.
Wang
,
Z.
Wang
,
J.
Peng
, and
J.
Ren
, “
Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
,”
Chin. Phys. B
30
,
036301
(
2021
).
You do not currently have access to this content.