Acoustic metasurfaces are two-dimensional materials that impart non-trivial amplitude and phase shifts on incident acoustic waves at a predetermined frequency. While acoustic metasurfaces enable extraordinary wavefront engineering capabilities, they are not developed well enough to independently control the amplitude and phase of reflected and transmitted acoustic waves simultaneously, which are governed by their geometry. We aim to solve the inverse design problem of finding a geometry to achieve a specified set of acoustic properties. The geometry is modeled by discretizing the continuous space into a finite number of elements, where each element can either be filled with air or solid material. Full wave simulations are performed to obtain the acoustic properties for a given geometry. It is computationally infeasible to simulate all geometries. To address this challenge, we develop an experimental design-based algorithm to efficiently perform the simulations. The algorithm starts with a few geometries and adaptively adds geometries to the set, such that they fill the entire space of the desired acoustic properties using a small fraction of the possible geometries. We find that the geometry needs to have at least 7 × 7 elements to obtain any given acoustic property with a tolerance of 5.4% of its maximum range. This is achieved by simulating 24 000 geometries using the proposed algorithm, which is only 4.2×109% of the 563 × 1012 possible geometries. The method provides a general solution to the inverse design problem that can be extended to control more acoustic properties.

1.
B.
Assouar
,
B.
Liang
,
Y.
Wu
,
Y.
Li
,
J.-C.
Cheng
, and
Y.
Jing
, “
Acoustic metasurfaces
,”
Nat. Rev. Mater.
3
,
460
472
(
2018
).
2.
B.
Liang
,
J.-c.
Cheng
, and
C.-W.
Qiu
, “
Wavefront manipulation by acoustic metasurfaces: From physics and applications
,”
Nanophotonics
7
,
1191
1205
(
2018
).
3.
Y.
Xie
,
W.
Wang
,
H.
Chen
,
A.
Konneker
,
B.-I.
Popa
, and
S. A.
Cummer
, “
Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface
,”
Nat. Commun.
5
,
5553
(
2014
).
4.
Y.
Li
,
X.
Jiang
,
R.-q.
Li
,
B.
Liang
,
X.-y.
Zou
,
L.-l.
Yin
, and
J.-c.
Cheng
, “
Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces
,”
Phys. Rev. Appl.
2
,
064002
(
2014
).
5.
G.
Ma
,
M.
Yang
,
S.
Xiao
,
Z.
Yang
, and
P.
Sheng
, “
Acoustic metasurface with hybrid resonances
,”
Nat. Mater.
13
,
873
878
(
2014
).
6.
Y.
Li
and
B. M.
Assouar
, “
Acoustic metasurface-based perfect absorber with deep subwavelength thickness
,”
Appl. Phys. Lett.
108
,
063502
(
2016
).
7.
M.
Dubois
,
C.
Shi
,
Y.
Wang
, and
X.
Zhang
, “
A thin and conformal metasurface for illusion acoustics of rapidly changing profiles
,”
Appl. Phys. Lett.
110
,
151902
(
2017
).
8.
K.
Melde
,
A. G.
Mark
,
T.
Qiu
, and
P.
Fischer
, “
Holograms for acoustics
,”
Nature
537
,
518
522
(
2016
).
9.
X.
Jiang
,
B.
Liang
,
J.-C.
Cheng
, and
C.-W.
Qiu
, “
Twisted acoustics: Metasurface-enabled multiplexing and demultiplexing
,”
Adv. Mater.
30
,
1800257
(
2018
).
10.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
11.
C.
Faure
,
O.
Richoux
,
S.
Félix
, and
V.
Pagneux
, “
Experiments on metasurface carpet cloaking for audible acoustics
,”
Appl. Phys. Lett.
108
,
064103
(
2016
).
12.
Y.
Zhu
,
J.
Hu
,
X.
Fan
,
J.
Yang
,
B.
Liang
,
X.
Zhu
, and
J.
Cheng
, “
Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase
,”
Nat. Commun.
9
,
1632
(
2018
).
13.
N. B.
Roberts
and
M.
Keshavarz Hedayati
, “
A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color
,”
Appl. Phys. Lett.
119
,
061101
(
2021
).
14.
Y.
Long
,
J.
Ren
,
Y.
Li
, and
H.
Chen
, “
Inverse design of photonic topological state via machine learning
,”
Appl. Phys. Lett.
114
,
181105
(
2019
).
15.
T. J.
Santner
,
B. J.
Williams
,
W. I.
Notz
, and
B. J.
Williams
,
The Design and Analysis of Computer Experiments
(
Springer
,
2003
).
16.
V. R.
Joseph
, “
Space-filling designs for computer experiments: A review
,”
Qual. Eng.
28
,
28
35
(
2016
).
17.
O.
Sigmund
and
K.
Maute
, “
Topology optimization approaches
,”
Struct. Multidiscip. Optim.
48
,
1031
1055
(
2013
).
18.
J.
Andkjær
and
O.
Sigmund
, “
Topology optimized cloak for airborne sound
,”
J. Vib. Acoust.
135
,
041011
(
2013
).
19.
D.
Li
,
L.
Zigoneanu
,
B.-I.
Popa
, and
S. A.
Cummer
, “
Design of an acoustic metamaterial lens using genetic algorithms
,”
J. Acoust. Soc. Am.
132
,
2823
2833
(
2012
).
20.
Y.
Li
,
B.
Liang
,
Z.-m.
Gu
,
X.-y.
Zou
, and
J.-c.
Cheng
, “
Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces
,”
Sci. Rep.
3
,
2546
(
2013
).
21.
J.
Zhao
,
B.
Li
,
Z.
Chen
, and
C.-W.
Qiu
, “
Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection
,”
Sci. Rep.
3
,
2537
(
2013
).
22.
K.
Tang
,
C.
Qiu
,
M.
Ke
,
J.
Lu
,
Y.
Ye
, and
Z.
Liu
, “
Anomalous refraction of airborne sound through ultrathin metasurfaces
,”
Sci. Rep.
4
,
6517
(
2015
).
23.
J.
Mei
and
Y.
Wu
, “
Controllable transmission and total reflection through an impedance-matched acoustic metasurface
,”
New J. Phys.
16
,
123007
(
2014
).
24.
Y.
Li
,
X.
Jiang
,
B.
Liang
,
J.-c.
Cheng
, and
L.
Zhang
, “
Metascreen-based acoustic passive phased array
,”
Phys. Rev. Appl.
4
,
024003
(
2015
).
25.
X.
Zhu
,
K.
Li
,
P.
Zhang
,
J.
Zhu
,
J.
Zhang
,
C.
Tian
, and
S.
Liu
, “
Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials
,”
Nat. Commun.
7
,
11731
(
2016
).
26.
X.
Jiang
,
Y.
Li
,
B.
Liang
,
J.-c.
Cheng
, and
L.
Zhang
, “
Convert acoustic resonances to orbital angular momentum
,”
Phys. Rev. Lett.
117
,
034301
(
2016
).
27.
M. E.
Johnson
,
L. M.
Moore
, and
D.
Ylvisaker
, “
Minimax and maximin distance designs
,”
J. Stat. Plann. Inference
26
,
131
148
(
1990
).
28.
S.
Mak
and
V. R.
Joseph
, “
Minimax and minimax projection designs using clustering
,”
J. Comput. Graphical Stat.
27
,
166
178
(
2018
).
29.
A.
Krishna
,
H.
Tran
,
C.
Huang
,
R.
Ramprasad
, and
V. R.
Joseph
, “
Adaptive exploration and optimization of materials crystal structures
,” INFORMS J. Data Sci. (submitted 2022).

Supplementary Material

You do not currently have access to this content.