The auxetic effect and topological phase transition are interesting mechanical and electronic properties of some materials, respectively. Although each has been extensively studied separately, no material has been identified to possess both properties simultaneously. Here, we report that a two-dimensional phosphorous nitride monolayer simultaneously possesses auxetic behavior and undergoes a topological phase transition under tensile strain. The monolayer has a normal-auxeticity mechanical phase transition when a tensile strain above 0.055 is applied along the P–P zigzag direction. The negative Poisson ratio can even approach as abnormally high as −0.60. Furthermore, the material is an intrinsic Dirac material, but a phase transition from the semi-Dirac material to Dirac material is observed at nearly the same critical tensile strain as that in auxetic phase transition. An electronic orbital analysis reveals that the simultaneity of the normal-auxeticity phase transition and topological phase transition originates from the variation of orbital hybridization around the Fermi level.

1.
Y.
Du
,
J.
Maassen
,
W.
Wu
,
Z.
Luo
,
X.
Xu
, and
P. D.
Ye
,
Nano Lett.
16
(
10
),
6701
6708
(
2016
).
2.
S.
Sun
,
F.
Meng
,
Y.
Xu
,
J.
He
,
Y.
Ni
, and
H.
Wang
,
J. Mater. Chem. A
7
(
13
),
7791
7799
(
2019
).
3.
G.
Liu
,
Q.
Zeng
,
P.
Zhu
,
R.
Quhe
, and
P.
Lu
,
Comput. Mater. Sci.
160
,
309
314
(
2019
).
4.
Y.
Wang
,
F.
Li
,
Y.
Li
, and
Z.
Chen
,
Nat. Commun.
7
(
1
),
11488
(
2016
).
5.
S.
Guo
and
H.
Sun
,
Phys. Rev. B
102
(
18
),
184116
(
2020
).
6.
Q.
Wei
,
Y.
Yang
,
A.
Gavrilov
, and
X.
Peng
,
Phys. Chem. Chem. Phys.
23
(
7
),
4353
4364
(
2021
).
7.
D.
Wu
,
S.
Wang
,
S.
Zhang
,
J.
Yuan
,
B.
Yang
, and
H.
Chen
,
Phys. Chem. Chem. Phys.
20
(
28
),
18924
18930
(
2018
).
8.
Q.
Wei
and
X.
Peng
,
Appl. Phys. Lett.
104
(
25
),
251915
(
2014
).
9.
Y.
Li
,
S.
Wang
, and
B.
Yang
,
ACS Omega
6
(
23
),
14896
14902
(
2021
).
10.
M.
Sun
and
U.
Schwingenschlögl
,
J. Phys. Chem. C
125
(
7
),
4133
4138
(
2021
).
11.
B.
Wang
,
Q.
Wu
,
Y.
Zhang
,
L.
Ma
, and
J.
Wang
,
ACS Appl. Mater. Interfaces
11
(
36
),
33231
33237
(
2019
).
12.
J. N.
Grima
,
S.
Winczewski
,
L.
Mizzi
,
M. C.
Grech
,
R.
Cauchi
,
R.
Gatt
,
D.
Attard
,
K. W.
Wojciechowski
, and
J.
Rybicki
,
Adv. Mater.
27
(
8
),
1455
1459
(
2015
).
13.
J.-W.
Jiang
and
H. S.
Park
,
Nat. Commun.
5
(
1
),
4727
(
2014
).
14.
F.
Ma
,
Y.
Jiao
,
W.
Wu
,
Y.
Liu
,
S. A.
Yang
, and
T.
Heine
,
Nano Lett.
21
(
6
),
2356
2362
(
2021
).
15.
Z.
Gao
,
Q.
Wang
,
W.
Wu
,
Z.
Tian
,
Y.
Liu
,
F.
Ma
,
Y.
Jiao
, and
S. A.
Yang
,
Phys. Rev. B
104
(
24
),
245423
(
2021
).
16.
K.
Bertoldi
,
P. M.
Reis
,
S.
Willshaw
, and
T.
Mullin
,
Adv. Mater.
22
,
361
366
(
2010
).
17.
B.
Deng
,
J.
Hou
,
H.
Zhu
,
S.
Liu
,
E.
Liu
,
Y.
Shi
, and
Q.
Peng
,
2D Mater.
4
(
2
),
021020
(
2017
).
18.
J.
Hou
,
B.
Deng
,
H.
Zhu
,
Y.
Lan
,
Y.
Shi
,
S.
De
,
L.
Liu
,
P.
Chakraborty
,
F.
Gao
, and
Q.
Peng
,
Carbon
149
,
350
354
(
2019
).
19.
F.
Scarpa
,
IEEE Signal Process. Mag.
25
,
128
126
(
2008
).
20.
Y.
Jiang
,
Z.
Liu
,
N.
Matsuhisa
,
D.
Qi
,
W. R.
Leow
,
H.
Yang
,
J.
Yu
,
G.
Chen
,
Y.
Liu
,
C.
Wan
,
Z.
Liu
, and
X.
Chen
,
Adv. Mater.
30
(
12
),
e1706589
(
2018
).
21.
P. U.
Kelkar
,
H. S.
Kim
,
K. H.
Cho
,
J. Y.
Kwak
,
C.-Y.
Kang
, and
H. C.
Song
,
Sensors
20
,
3132
(
2020
).
22.
K. K.
Saxena
,
R.
Das
, and
E. P.
Calius
,
Adv. Eng. Mater.
18
(
11
),
1847
1870
(
2016
).
23.
P.
Liu
,
J. R.
Williams
, and
J. J.
Cha
,
Nat. Rev. Mater.
4
(
7
),
479
496
(
2019
).
24.
B.
Yan
and
C.
Felser
,
Annu. Rev. Condens. Matter Phys.
8
(
1
),
337
354
(
2017
).
25.
L.
Xie
,
H.
Wu
,
L.
Jin
, and
Z.
Song
,
Phys. Rev. B
104
(
16
),
165422
(
2021
).
26.
B.-J.
Yang
and
Y. B.
Kim
,
Phys. Rev. B
82
(
8
),
085111
(
2010
).
27.
X.-L.
Qi
and
S.-C.
Zhang
,
Rev. Mod. Phys.
83
(
4
),
1057
(
2011
).
28.
X.
Wan
,
A. M.
Turner
,
A.
Vishwanath
, and
S. Y.
Savrasov
,
Phys. Rev. B
83
(
20
),
205101
(
2011
).
29.
A.
Narayan
,
Phys. Rev. B
91
,
205445
(
2015
).
30.
L.-Y.
Feng
,
R. A. B.
Villaos
,
A. B.
Maghirang
,
Z.-Q.
Huang
,
C.-H.
Hsu
,
H.
Lin
, and
F.-C.
Chuang
,
Sci. Rep.
12
(
1
),
4582
(
2022
).
31.
S. M.
Young
and
C. L.
Kane
,
Phys. Rev. Lett.
115
(
12
),
126803
(
2015
).
32.
S. M.
Young
,
S.
Zaheer
,
J. C.
Teo
,
C. L.
Kane
,
E. J.
Mele
, and
A. M.
Rappe
,
Phys. Rev. Lett.
108
(
14
),
140405
(
2012
).
33.
S.
Jia
,
S.-Y.
Xu
, and
M. Z.
Hasan
,
Nat. Mater.
15
(
11
),
1140
1144
(
2016
).
34.
M.
Naher
and
S.
Naqib
,
Sci. Rep.
11
(
1
),
5592
(
2021
).
35.
H.
Zhang
,
Y.
Xie
,
Z.
Zhang
,
C.
Zhong
,
Y.
Li
,
Z.
Chen
, and
Y.
Chen
,
J. Phys. Chem. Lett.
8
(
8
),
1707
1713
(
2017
).
36.
J.
He
,
X.
Kong
,
W.
Wang
, and
S.-P.
Kou
,
New J. Phys.
20
(
5
),
053019
(
2018
).
37.
C.
Lin
,
M.
Ochi
,
R.
Noguchi
,
K.
Kuroda
,
M.
Sakoda
,
A.
Nomura
,
M.
Tsubota
,
P.
Zhang
,
C.
Bareille
,
K.
Kurokawa
,
Y.
Arai
,
K.
Kawaguchi
,
H.
Tanaka
,
K.
Yaji
,
A.
Harasawa
,
M.
Hashimoto
,
D.
Lu
,
S.
Shin
,
R.
Arita
,
S.
Tanda
, and
T.
Kondo
,
Nat. Mater.
20
(
8
),
1093
1099
(
2021
).
38.
C.
Zhong
,
Y.
Chen
,
Y.
Xie
,
Y.-Y.
Sun
, and
S.
Zhang
,
Phys. Chem. Chem. Phys.
19
(
5
),
3820
3825
(
2017
).
39.
Z.
Wu
,
Z.
Shen
,
Y.
Xue
, and
C.
Song
,
Phys. Rev. Mater.
6
(
1
),
014011
(
2022
).
40.
Y.
Du
,
F.
Tang
,
D.
Wang
,
L.
Sheng
,
E.-J.
Kan
,
C.-G.
Duan
,
S. Y.
Savrasov
, and
X.
Wan
,
npj Quantum Mater.
2
(
1
),
3
(
2017
).
41.
J.
Li
,
H.
Wang
, and
H.
Pan
,
Phys. Rev. B
104
(
23
),
235136
(
2021
).
42.
J.
Hafner
,
J. Comput. Chem.
29
(
13
),
2044
2078
(
2008
).
43.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
44.
J. P.
Perdew
and
W.
Yue
,
Phys. Rev. B
33
(
12
),
8800
8802
(
1986
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
46.
N. A. W.
Holzwarth
,
G. E.
Matthews
,
R. B.
Dunning
,
A. R.
Tackett
, and
Y.
Zeng
,
Phys. Rev. B
55
(
4
),
2005
2017
(
1997
).
47.
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
48.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
5
(
2015
).
49.
Y.
Xie
,
Y.
Kang
,
S.
Li
,
X.
Yan
, and
Y.
Chen
,
Appl. Phys. Lett.
118
,
193101
(
2021
).

Supplementary Material

You do not currently have access to this content.