Characterizing the novel properties of layered van der Waals materials is key for their application in functional devices. A better understanding of this type of material requires correlative imaging of diverse nanoscale material properties. Within this class of materials, CuInP2S6 (CIPS) has received a significant degree of interest due to its ionically mediated room temperature ferroelectricity. Moreover, it is possible to form stable self-assembled heterostructures of ferroelectric CuInP2S6 (CIPS) and non-ferroelectric (i.e., lacking Cu) In4/3P2S6 (IPS) phases, by controlling the targeted composition and kinetics of synthesis. In this work, we present a correlative nanometric imaging study of the phononic modes and piezoelectricity of the phase-separated thin heteroepitaxial CIPS/IPS flakes. We show that it is possible to isolate the different phononic modes of the two phases by spatially correlating them with their distinct ferroelectric behavior. The coupling of our experimental data with unsupervised learning statistical methods enables unraveling specific Raman peaks that are characteristic of each chemical phase (CIPS and IPS) present in the composite sample, discarding the less significant ones.

1.
F.
Xue
,
J.-H.
He
, and
X.
Zhang
, “
Emerging van der Waals ferroelectrics: Unique properties and novel devices
,”
Appl. Phys. Rev.
8
(
2
),
021316
(
2021
).
2.
M. A.
Susner
,
M.
Chyasnavichyus
,
M. A.
McGuire
,
P.
Ganesh
, and
P.
Maksymovych
, “
Metal thio‐and selenophosphates as multifunctional van der Waals layered materials
,”
Adv. Mater.
29
(
38
),
1602852
(
2017
).
3.
X.-Q.
Yan
,
X.
Zhao
,
H.
Xu
,
L.
Zhang
,
D.
Liu
,
Y.
Zhang
,
C.
Huo
,
F.
Liu
,
J.
Xie
, and
X.
Dong
, “
Temperature-tunable optical properties and carrier relaxation of CuInP2S6 crystals under ferroelectric-paraelectric phase transition
,”
J. Mater. Chem. C
10
(
2
),
696
706
(
2022
).
4.
X.
Jiang
,
X.
Wang
,
X.
Wang
,
X.
Zhang
,
R.
Niu
,
J.
Deng
,
S.
Xu
,
Y.
Lun
,
Y.
Liu
, and
T.
Xia
, “
Manipulation of current rectification in van der Waals ferroionic CuInP2S6
,”
Nat. Commun.
13
(
1
),
1
8
(
2022
).
5.
J.
Chen
,
C.
Zhu
,
G.
Cao
,
H.
Liu
,
R.
Bian
,
J.
Wang
,
C.
Li
,
J.
Chen
,
Q.
Fu
, and
Q.
Liu
, “
Mimicking neuroplasticity via ion migration in van der Waals layered copper indium thiophosphate
,”
Adv. Mater.
34
,
2104676
(
2022
).
6.
J. A.
Brehm
,
S. M.
Neumayer
,
L.
Tao
,
A.
O'Hara
,
M.
Chyasnavichus
,
M. A.
Susner
,
M. A.
McGuire
,
S. V.
Kalinin
,
S.
Jesse
, and
P.
Ganesh
, “
Tunable quadruple-well ferroelectric van der Waals crystals
,”
Nat. Mater.
19
(
1
),
43
48
(
2020
).
7.
M.
Chyasnavichyus
,
M. A.
Susner
,
A. V.
Ievlev
,
E. A.
Eliseev
,
S. V.
Kalinin
,
N.
Balke
,
A. N.
Morozovska
,
M. A.
McGuire
, and
P.
Maksymovych
, “
Size-effect in layered ferrielectric CuInP2S6
,”
Appl. Phys. Lett.
109
(
17
),
172901
(
2016
).
8.
M.
Checa
,
S.
Neumayer
,
M. A.
Susner
,
M. A.
McGuire
,
P.
Maksymovych
, and
L.
Collins
, “
Simultaneous mapping of nanoscale dielectric, electrochemical, and ferroelectric surface properties of van der Waals layered ferroelectric via advanced SPM
,”
Appl. Phys. Lett.
119
(
25
),
252905
(
2021
).
9.
S. M.
Neumayer
,
Z.
Zhao
,
A.
O'Hara
,
M. A.
McGuire
,
M. A.
Susner
,
S. T.
Pantelides
,
P.
Maksymovych
, and
N.
Balke
, “
Nanoscale control of polar surface phases in layered van der Waals CuInP2S6
,”
ACS Nano
16
,
2452
(
2022
).
10.
N.
Balke
,
S. M.
Neumayer
,
J. A.
Brehm
,
M. A.
Susner
,
B. J.
Rodriguez
,
S.
Jesse
,
S. V.
Kalinin
,
S. T.
Pantelides
,
M. A.
McGuire
, and
P.
Maksymovych
, “
Locally controlled Cu-ion transport in layered ferroelectric CuInP2S6
,”
ACS Appl. Mater. Interfaces
10
(
32
),
27188
27194
(
2018
).
11.
S. M.
Neumayer
,
J. A.
Brehm
,
L.
Tao
,
A.
O'Hara
,
P.
Ganesh
,
S.
Jesse
,
M. A.
Susner
,
M. A.
McGuire
,
S. T.
Pantelides
, and
P.
Maksymovych
, “
Local strain and polarization mapping in ferrielectric materials
,”
ACS Appl. Mater. Interfaces
12
(
34
),
38546
38553
(
2020
).
12.
M. A.
Susner
,
A.
Belianinov
,
A.
Borisevich
,
Q.
He
,
M.
Chyasnavichyus
,
H.
Demir
,
D. S.
Sholl
,
P.
Ganesh
,
D. L.
Abernathy
, and
M. A.
McGuire
, “
High-Tc layered ferrielectric crystals by coherent spinodal decomposition
,”
ACS Nano
9
(
12
),
12365
12373
(
2015
).
13.
A.
Gruverman
and
S. V.
Kalinin
, “
Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics
,”
J. Mater. Sci.
41
(
1
),
107
116
(
2006
).
14.
D.
Graf
,
F.
Molitor
,
K.
Ensslin
,
C.
Stampfer
,
A.
Jungen
,
C.
Hierold
, and
L.
Wirtz
, “
Spatially resolved Raman spectroscopy of single-and few-layer graphene
,”
Nano Lett.
7
(
2
),
238
242
(
2007
).
15.
S.
Jesse
,
R.
Vasudevan
,
L.
Collins
,
E.
Strelcov
,
M. B.
Okatan
,
A.
Belianinov
,
A. P.
Baddorf
,
R.
Proksch
, and
S. V.
Kalinin
, “
Band excitation in scanning probe microscopy: Recognition and functional imaging
,”
Annu. Rev. Phys. Chem.
65
,
519
536
(
2014
).
16.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.-E.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
17.
A.
Belianinov
,
Q.
He
,
A.
Dziaugys
,
P.
Maksymovych
,
E.
Eliseev
,
A.
Borisevich
,
A.
Morozovska
,
J.
Banys
,
Y.
Vysochanskii
, and
S. V.
Kalinin
, “
CuInP2S6 room temperature layered ferroelectric
,”
Nano Lett.
15
(
6
),
3808
3814
(
2015
).
18.
A. V.
Ievlev
,
M. A.
Susner
,
M. A.
McGuire
,
P.
Maksymovych
, and
S. V.
Kalinin
, “
Quantitative analysis of the local phase transitions induced by laser heating
,”
ACS Nano
9
(
12
),
12442
12450
(
2015
).
19.
L.
Chen
,
Y.
Li
,
C.
Li
,
H.
Wang
,
Z.
Han
,
H.
Ma
,
G.
Yuan
,
L.
Lin
,
Z.
Yan
, and
X.
Jiang
, “
Thickness dependence of domain size in 2D ferroelectric CuInP2S6 nanoflakes
,”
AIP Adv.
9
(
11
),
115211
(
2019
).
20.
R.
Rao
,
B. S.
Conner
,
R.
Selhorst
, and
M. A.
Susner
, “
Pressure-driven phase transformations and phase segregation in ferrielectric CuInP2S6–In4/3P2S6 self-assembled heterostructures
,”
Phys. Rev. B
104
(
23
),
235421
(
2021
).
21.
R.
Rao
,
R.
Selhorst
,
B. S.
Conner
, and
M. A.
Susner
, “
Ferrielectric-paraelectric phase transitions in layered CuInP2S6 and CuInP2S6–In4/3P2S6 heterostructures: A Raman spectroscopy and x-ray diffraction study
,” arXiv:2111.00615 (
2021
).
22.
S. N.
Neal
,
S.
Singh
,
X.
Fang
,
C.
Won
,
F.-T.
Huang
,
S.-W.
Cheong
,
K. M.
Rabe
,
D.
Vanderbilt
, and
J. L.
Musfeldt
, “
Vibrational properties of CuInP2S6 across the ferroelectric transition
,”
Phys. Rev. B
105
(
7
),
075151
(
2022
).
23.
Y. M.
Vysochanskii
,
V.
Stephanovich
,
A.
Molnar
,
V.
Cajipe
, and
X.
Bourdon
, “
Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6
,”
Phys. Rev. B
58
(
14
),
9119
(
1998
).
24.
S.
Kumar
,
K.
Tokunaga
,
K.
Namura
,
T.
Fukuoka
, and
M.
Suzuki
, “
Experimental evidence of a twofold electromagnetic enhancement mechanism of surface-enhanced Raman scattering
,”
J. Phys. Chem. C
124
(
38
),
21215
21222
(
2020
).
25.
Y.
Mathey
,
R.
Cle
,
J.
Audiere
,
O.
Poizat
, and
C.
Sourisseau
, “
Structural, vibrational and conduction properties of a new class of layer-type MPS3 compounds: MnII1−xMI2xPS3 (MI = Cu, Ag)
,”
Solid State Ion.
9–10
,
459
465
(
1983
).
You do not currently have access to this content.