By varying the degree of correlation in stealthy hyperuniform (SHU) materials, the continuous evolution from uncorrelated disorder to periodic media is possible and allows us, as such, to study the fate of the bimodal distribution, the characteristic of a diffusive transport. Considering the wave transport through a SHU distribution of a given number of scatterers and at a given frequency, the transition from a diffusive to a transparent medium is clearly observed only below the Bragg frequency. This transition is characterized by a threshold value of the stealthiness at the vicinity of which the material abruptly changes from diffusive to transparent. In contrast, no such clear transition is observed at or above the Bragg frequency and, surprisingly, a seemingly bimodal distribution of the transmission eigenvalues still characterizes the SHU materials, even when strongly correlated.

1.
E.
Akkermans
and
G.
Montambaux
,
Mesoscopic Physics of Electrons and Photons
(
Cambridge University Press
,
2007
).
2.
A.
García-Marín
and
J. J.
Sáenz
, “
Statistical properties of wave transport through surface-disordered waveguides
,”
Wave Random Complex
15
,
229
(
2005
).
3.
S.
Rotter
and
S.
Gigan
, “
Light fields in complex media: Mesoscopic scattering meets wave control
,”
Rev. Mod. Phys.
89
,
015005
(
2017
).
4.
J. D.
Joannnopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals. Molding the Flow of Light
(
Princeton University Press
,
2008
).
5.
Acoustic Metamaterials and Phononic Crystals
, edited by
P. A.
Deymier
(
Springer
,
2013
).
6.
O. N.
Dorokhov
, “
On the coexistence of localized and extended electronic states in the metallic phase
,”
Solid State Commun.
51
,
381
(
1984
).
7.
Y.
Imry
, “
Active transmission channels and universal conductance fluctuations
,”
Europhys. Lett.
1
,
249
(
1986
).
8.
P. A.
Mello
,
P.
Pereyra
, and
N.
Kumar
, “
Macroscopic approach to multichannel disordered conductors
,”
Ann. Phys.
181
,
290
(
1988
).
9.
Y. V.
Nazarov
, “
Limits of universality in disordered conductors
,”
Phys. Rev. Lett.
73
,
134
(
1994
).
10.
C. W. J.
Beenakker
, “
Random-matrix theory of quantum transport
,”
Rev. Mod. Phys.
69
,
731
(
1997
).
11.
W.
Choi
,
A. P.
Mosk
,
Q.-H.
Park
, and
W.
Choi
, “
Transmission eigenchannels in a disordered medium
,”
Phys. Rev. B
83
,
134207
(
2011
).
12.
A.
Goetschy
and
A. D.
Stone
, “
Filtering random matrices: The effect of incomplete channel control in multiple scattering
,”
Phys. Rev. Lett.
111
,
063901
(
2013
).
13.
B.
Gérardin
,
J.
Laurent
,
A.
Derode
,
C.
Prada
, and
A.
Aubry
, “
Full transmission and reflection of waves propagating through a maze of disorder
,”
Phys. Rev. Lett.
113
,
173901
(
2014
).
14.
R.
Sarma
,
A.
Yamilov
,
S.
Petrenko
,
Y.
Bromberg
, and
H.
Cao
, “
Control of energy density inside a disordered medium by coupling to open or closed channels
,”
Phys. Rev. Lett.
117
,
086803
(
2016
).
15.
I. M.
Vellekoop
and
A. P.
Mosk
, “
Focusing coherent light through opaque strongly scattering media
,”
Opt. Lett.
32
,
2309
(
2007
).
16.
K.
Vynck
,
R.
Pierrat
,
R.
Carminati
,
L. S.
Froufe-Pérez
,
F.
Scheffold
,
R.
Sapienza
,
S.
Vignolini
, and
J. J.
Sáenz
, “
Light in correlated disordered media
,” arXiv:2106.13892 (
2021
).
17.
M.
Davy
,
C.
Ferise
,
É.
Chéron
,
S.
Félix
, and
V.
Pagneux
, “
Experimental evidence of enhanced broadband transmission in disordered systems with mirror symmetry
,”
Appl. Phys. Lett.
119
,
141104
(
2021
).
18.
H.
Zhang
,
H.
Chu
,
H.
Giddens
,
W.
Wu
, and
Y.
Hao
, “
Experimental demonstration of luneburg lens based on hyperuniform disordered media
,”
Appl. Phys. Lett.
114
,
053507
(
2019
).
19.
H.
Zhang
,
Q.
Cheng
,
H.
Chu
,
O.
Christogeorgos
,
W.
Wu
, and
Y.
Hao
, “
Hyperuniform disordered distribution metasurface for scattering reduction
,”
Appl. Phys. Lett.
118
,
101601
(
2021
).
20.
J. H.
Weijs
,
R.
Jeanneret
,
R.
Dreyfus
, and
D.
Bartolo
, “
Emergent hyperuniformity in periodically driven emulsions
,”
Phys. Rev. Lett.
115
,
108301
(
2015
).
21.
A.
Chremos
and
J. F.
Douglas
, “
Hidden hyperuniformity in soft polymeric materials
,”
Phys. Rev. Lett.
121
,
258002
(
2018
).
22.
S.
Torquato
and
F. H.
Stillinger
, “
Local density fluctuations, hyperuniformity, and order metrics
,”
Phys. Rev. E
68
,
041113
(
2003
).
23.
R. D.
Batten
,
F. H.
Stillinger
, and
S.
Torquato
, “
Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials
,”
J. Appl. Phys.
104
,
033504
(
2008
).
24.
M.
Florescu
,
S.
Torquato
, and
P. J.
Steinhardt
, “
Designer disordered materials with large, complete photonic band gaps
,”
Proc. Natl. Acad. Sci.
106
,
20658
(
2009
).
25.
G.
Zhang
,
F. H.
Stillinger
, and
S.
Torquato
, “
Ground states of stealthy hyperuniform potentials: I. Entropically favored configurations
,”
Phys. Rev. E
92
,
022119
(
2015
).
26.
G.
Zhang
,
F. H.
Stillinger
, and
S.
Torquato
, “
Ground states of stealthy hyperuniform potentials. II. Stacked-slider phases
,”
Phys. Rev. E
92
,
022120
(
2015
).
27.
O.
Leseur
,
R.
Pierrat
, and
R.
Carminati
, “
High-density hyperuniform materials can be transparent
,”
Optica
3
,
763
(
2016
).
28.
L. S.
Froufe-Pérez
,
M.
Engel
,
P. F.
Damasceno
,
N.
Muller
,
J.
Haberko
,
S. C.
Glotzer
, and
F.
Scheffold
, “
Role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials
,”
Phys. Rev. Lett.
117
,
053902
(
2016
).
29.
L. S.
Froufe-Pérez
,
M.
Engel
,
J. J.
Sáenz
, and
F.
Scheffold
, “
Band gap formation and Anderson localization in disordered photonic materials with structural correlations
,”
Proc. Natl. Acad. Sci.
114
,
9570
(
2017
).
30.
S.
Torquato
, “
Hyperuniform states of matter
,”
Phys. Rep.
745
,
1
(
2018
).
31.
F.
Bigourdan
,
R.
Pierrat
, and
R.
Carminati
, “
Enhanced absorption of waves in stealth hyperuniform disordered media
,”
Opt. Express
27
,
8666
(
2019
).
32.
G. J.
Aubry
,
L. S.
Froufe-Pérez
,
U.
Kuhl
,
O.
Legrand
,
F.
Scheffold
, and
F.
Mortessagne
, “
Experimental tuning of transport regimes in hyperuniform disordered photonic materials
,”
Phys. Rev. Lett.
125
,
127402
(
2020
).
33.
A.
Rohfritsch
,
J.-M.
Conoir
,
T.
Valier-Brasier
, and
R.
Marchiano
, “
Impact of particle size and multiple scattering on the propagation of waves in stealthy-hyperuniform media
,”
Phys. Rev. E
102
,
053001
(
2020
).
34.
A.
Sheremet
,
R.
Pierrat
, and
R.
Carminati
, “
Absorption of scalar waves in correlated disordered media and its maximization using stealth hyperuniformity
,”
Phys. Rev. A
101
,
053829
(
2020
).
35.
V.
Romero-García
,
E.
Chéron
,
S.
Kuznetsova
,
J.-P.
Groby
,
S.
Félix
,
V.
Pagneux
, and
L. M.
García-Raffi
, “
Wave transport in 1D stealthy hyperuniform phononic materials made of non-resonant and resonant scatterers
,”
APL Mater.
9
,
101101
(
2021
).
36.
V.
Romero-García
,
N.
Lamothe
,
G.
Theocharis
,
O.
Richoux
, and
L. M.
García-Raffi
, “
Stealth acoustic materials
,”
Phys. Rev. Appl.
11
,
054076
(
2019
).
37.
E.
Chéron
,
J.-P.
Groby
,
V.
Pagneux
,
S.
Félix
, and
V.
Romero-García
, “
Experimental characterization of rigid scatterer hyperuniform distributions for audible acoustics
,” arXiv:2111.15548 (
2021
).
38.
W.
Man
,
M.
Florescu
,
E. P.
Williamson
,
Y.
He
,
S. R.
Hashemizad
,
B. Y. C.
Leung
,
D. R.
Liner
,
S.
Torquato
,
P. M.
Chaikin
, and
P. J.
Steinhardt
, “
Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids
,”
Proc. Natl. Acad. Sci.
110
,
15886
(
2013
).
39.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders College Publishing
,
1976
).
40.
S.
Kuznetsova
,
J.-P.
Groby
,
L. M.
García-Raffi
, and
V.
Romero-García
, “
Stealth and equiluminous materials for scattering cancellation and wave diffusion
,”
Waves Random Complex Media
(published online) (
2021
).
41.
Y.
Imry
and
R.
Landauer
, “
Conductance viewed as transmission
,”
Rev. Mod. Phys.
71
,
S306
(
1999
).
42.
N.
Verrier
,
L.
Depraeter
,
D.
Felbacq
, and
M.
Gross
, “
Measuring enhanced optical correlations induced by transmission open channels in a slab geometry
,”
Phys. Rev. B
93
,
161114
(
2016
).
43.
Note that the “Ohm” conductance varies with the frequency [see, in Figs. 3(a), 3(e), and 3(i), the values of the conductance for χ1], since the transport mean free path itself depends on the frequency.
You do not currently have access to this content.