Due to their unique structures and properties, emerging two-dimensional (2D) materials have been at the frontier of research in, e.g., materials science, physics, and engineering. Three-dimensional (3D) tubular geometry enables 2D materials unparalleled advantages for various applications, for example, wide-angle infrared photodetectors, extremely sensitive molecular sensors, and memory with high density. Furthermore, 3D tubular structures offer a promising integration platform into chips with a broad range of materials, especially 2D materials. In this Perspective, we highlight state-of-the-art methods to assemble/manufacture 2D materials into 3D tubular structures/devices via self-rolled-up or template methods. These tubular 3D devices inspire unique physical, chemical, and mechanical properties for optical microcavity, photodetector, on-chip electronics, and bubble-propelled microengines. On-chip manufacture of 3D tubular structures/devices provides great opportunity and challenge for 2D materials for More than Moore applications such as unconventional electronics, smart sensors, and miniaturized robots.

1.
S.
Xu
,
Z.
Yan
,
K. I.
Jang
,
W.
Huang
,
H. R.
Fu
,
J.
Kim
,
Z. J.
Wei
,
M.
Flavin
,
J.
McCracken
,
R. H.
Wang
,
A.
Badea
,
Y. H.
Liu
,
D. Q.
Xiao
,
G. Y.
Zhou
,
J.
Lee
,
H. U.
Chung
,
H. Y.
Cheng
,
W.
Ren
,
A.
Banks
,
X. L.
Li
,
U.
Paik
,
R. G.
Nuzzo
,
Y. G.
Huang
,
Y. H.
Zhang
, and
J. A.
Rogers
, “
Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling
,”
Science
347
,
154
159
(
2015
).
2.
G. S.
Huang
and
Y. F.
Mei
, “
Assembly and self-assembly of nanomembrane materials-from 2D to 3D
,”
Small
14
,
e1703665
(
2018
).
3.
Z.
Yang
,
M. D.
Kraman
,
Z.
Zheng
,
H.
Zhao
,
J.
Zhang
,
S.
Gong
,
Y. V.
Shao
,
W.
Huang
,
P.
Wang
, and
X.
Li
, “
Monolithic heterogeneous integration of 3D radio frequency L-C elements by self‐rolled‐up membrane nanotechnology
,”
Adv. Funct. Mater.
30
,
2004034
(
2020
).
4.
H.
Wang
,
H. L.
Zhen
,
S. L.
Li
,
Y. L.
Jing
,
G. S.
Huang
,
Y. F.
Mei
, and
W.
Lu
, “
Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors
,”
Sci. Adv.
2
,
e1600027
(
2016
).
5.
C. H.
Xu
,
R. B.
Pan
,
Q. L.
Guo
,
X.
Wu
,
G. J.
Li
,
G. S.
Huang
,
Z. H.
An
,
X. L.
Li
, and
Y. F.
Mei
, “
Ultrathin silicon nanomembrane in a tubular geometry for enhanced photodetection
,”
Adv. Optical Mater.
7
,
1900823
(
2019
).
6.
T.
Deng
,
Z. H.
Zhang
,
Y. X.
Liu
,
Y. X.
Wang
,
F.
Su
,
S. S.
Li
,
Y.
Zhang
,
H.
Li
,
H. J.
Chen
,
Z. R.
Zhao
,
Y.
Li
, and
Z. W.
Liu
, “
Three-dimensional graphene field-effect transistors as high-performance photodetectors
,”
Nano Lett.
19
,
1494
1503
(
2019
).
7.
Z.
Tian
,
S. L.
Li
,
S.
Kiravittaya
,
B. R.
Xu
,
S. W.
Tang
,
H. L.
Zhen
,
W.
Lu
, and
Y. F.
Mei
, “
Selected and enhanced single whispering-gallery mode emission from a mesostructured nanomembrane microcavity
,”
Nano Lett.
18
,
8035
8040
(
2018
).
8.
G.
Huang
,
V. A.
Bolanos Quinones
,
F.
Ding
,
S.
Kiravittaya
,
Y.
Mei
, and
O. G.
Schmidt
, “
Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications
,”
ACS Nano
4
,
3123
3130
(
2010
).
9.
G. S.
Huang
and
Y. F.
Mei
, “
Electromagnetic wave propagation in a rolled-up tubular microcavity
,”
J. Mater. Chem. C
5
,
2758
2770
(
2017
).
10.
Y.
Chen
,
C.
Yan
, and
O. G.
Schmidt
, “
Strain-driven formation of multilayer graphene/GeO2 tubular nanostructures as high-capacity and very long-life anodes for lithium-ion batteries
,”
Adv. Energy Mater.
3
,
1269
1274
(
2013
).
11.
X. J.
Zhao
,
G.
Wang
,
X. J.
Liu
,
X. L.
Zheng
, and
H.
Wang
, “
Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries
,”
Nano Res.
11
,
3603
3618
(
2018
).
12.
C. G.
Hu
,
Y.
Zhao
,
H. H.
Cheng
,
Y. H.
Wang
,
Z. L.
Dong
,
C. C.
Jiang
,
X. Q.
Zhai
,
L.
Jiang
, and
L. T.
Qu
, “
Graphene microtubings: Controlled fabrication and site-specific functionalization
,”
Nano Lett.
12
,
5879
5884
(
2012
).
13.
J. X.
Li
,
W. J.
Liu
,
J. Y.
Wang
,
I.
Rozen
,
S.
He
,
C. R.
Chen
,
H. G.
Kim
,
H. J.
Lee
,
H. B. R.
Lee
,
S. H.
Kwon
,
T. L.
Li
,
L. Q.
Li
,
J.
Wang
, and
Y. F.
Mei
, “
Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: Toward ultrasmall highly efficient catalytic nanorockets
,”
Adv. Funct. Mater.
27
,
1700598
(
2017
).
14.
Y.
Zhang
,
H.
Zhu
,
W.
Qiu
,
Y.
Zhou
,
G.
Huang
,
Y.
Mei
, and
A. A.
Solovev
, “
Carbon dioxide bubble-propelled microengines in carbonated water and beverages
,”
Chem. Commun.
54
,
5692
5695
(
2018
).
15.
Z.
Tian
,
B. R.
Xu
,
B.
Hsu
,
L.
Stan
,
Z.
Yang
, and
Y. F.
Mei
, “
Reconfigurable vanadium dioxide nanomembranes and microtubes with controllable phase transition temperatures
,”
Nano Lett.
18
,
3017
3023
(
2018
).
16.
B.
Xu
,
X.
Zhang
,
Z.
Tian
,
D.
Han
,
X.
Fan
,
Y.
Chen
,
Z.
Di
,
T.
Qiu
, and
Y.
Mei
, “
Microdroplet-guided intercalation and deterministic delamination towards intelligent rolling origami
,”
Nat. Commun.
10
,
5019
(
2019
).
17.
Z.
Ma
,
Z.
Tian
,
X.
Li
,
C.
You
,
Y.
Wang
,
Y.
Mei
, and
Z.
Di
, “
Self-rolling of monolayer graphene for ultrasensitive molecular sensing
,”
ACS Appl. Mater. Interfaces
13
,
49146
49152
(
2021
).
18.
X.
Wu
,
Z.
Tian
,
H.
Cong
,
Y.
Wang
,
R.
Edy
,
G.
Huang
,
Z.
Di
,
C.
Xue
, and
Y.
Mei
, “
Infrared tubular microcavity based on rolled-up GeSn/Ge nanomembranes
,”
Nanotechnol.
29
,
42LT02
(
2018
).
19.
S.
Yang
,
Y.
Wang
,
Y.
Kong
,
G.
Huang
,
Z.
Zhao
,
Y.
Wang
,
B.
Xu
,
J.
Cui
, and
Y.
Mei
, “
Enhanced evanescent field coupling of smart particles in tubular optical microcavity for sensing application
,”
Adv. Optical Mater.
10
,
2102158
(
2022
).
20.
J. A.
Rogers
,
M. G.
Lagally
, and
R. G.
Nuzzo
, “
Synthesis, assembly and applications of semiconductor nanomembranes
,”
Nature
477
,
45
53
(
2011
).
21.
Y.
Wakafuji
,
R.
Moriya
,
S.
Masubuchi
,
K.
Watanabe
,
T.
Taniguchi
, and
T.
Machida
, “
3D manipulation of 2d materials using microdome polymer
,”
Nano Lett.
20
,
2486
2492
(
2020
).
22.
P. Z.
Hanakata
,
Z. A.
Qi
,
D. K.
Campbell
, and
H. S.
Park
, “
Highly stretchable MoS2 kirigami
,”
Nanoscale
8
,
458
463
(
2016
).
23.
Z.
Yan
,
F.
Zhang
,
J.
Wang
,
F.
Liu
,
X.
Guo
,
K.
Nan
,
Q.
Lin
,
M.
Gao
,
D.
Xiao
,
Y.
Shi
,
Y.
Qiu
,
H.
Luan
,
J. H.
Kim
,
Y.
Wang
,
H.
Luo
,
M.
Han
,
Y.
Huang
,
Y.
Zhang
, and
J. A.
Rogers
, “
Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials
,”
Adv. Funct. Mater.
26
,
2629
2639
(
2016
).
24.
L.
Wang
,
Z.
Tian
,
B.
Zhang
,
B.
Xu
,
T.
Wang
,
Y.
Wang
,
S.
Li
,
Z.
Di
, and
Y.
Mei
, “
On-chip rolling design for controllable strain engineering and enhanced photon-phonon interaction in graphene
,”
Small
15
,
e1805477
(
2019
).
25.
X.
Cheng
and
Y.
Zhang
, “
Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches
,”
Adv. Mater.
31
,
e1901895
(
2019
).
26.
X. P.
Cui
,
Z. Z.
Kong
,
E. L.
Gao
,
D. Z.
Huang
,
Y.
Hao
,
H. G.
Shen
,
C. A.
Di
,
Z. P.
Xu
,
J.
Zheng
, and
D. B.
Zhu
, “
Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol
,”
Nat. Commun.
9
,
1301
(
2018
).
27.
X. F.
Zhou
,
Z.
Tian
,
H. J.
Kim
,
Y.
Wang
,
B. R.
Xu
,
R. B.
Pan
,
Y. J.
Chang
,
Z. F.
Di
,
P.
Zhou
, and
Y. F.
Mei
, “
Rolling up MoSe2 nanomembranes as a sensitive tubular photodetector
,”
Small
15
,
e1902528
(
2019
).
28.
M. Z.
Miskin
,
K. J.
Dorsey
,
B.
Bircan
,
Y.
Han
,
D. A.
Muller
,
P. L.
McEuen
, and
I.
Cohen
, “
Graphene-based bimorphs for micron-sized, autonomous origami machines
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
466
470
(
2018
).
29.
E.
Okogbue
,
S. S.
Han
,
T.-J.
Ko
,
H.-S.
Chung
,
J.
Ma
,
M. S.
Shawkat
,
J. H.
Kim
,
J. H.
Kim
,
E.
Ji
,
K. H.
Oh
,
L.
Zhai
,
G.-H.
Lee
, and
Y.
Jung
, “
Multifunctional Two-dimensional PtSe2-Layer kirigami conductors with 2000% stretchability and metallic-to-semiconducting tunability
,”
Nano Lett.
19
,
7598
7607
(
2019
).
30.
T. J.
Ko
,
S. S.
Han
,
E.
Okogbue
,
M. S.
Shawkat
,
M. J.
Wang
,
J.
Ma
,
T. S.
Bae
,
S.
Bin Hafiz
,
D. K.
Ko
,
H. S.
Chung
,
K. H.
Oh
, and
Y.
Jung
, “
Wafer-scale 2D PtTe2 layers-enabled Kirigami heaters with superior mechanical stretchability and electro-thermal responsiveness
,”
Appl. Mater. Today
20
,
100718
(
2020
).
31.
L.
Cai
,
M. J.
Shearer
,
Y. Z.
Zhao
,
Z. L.
Hu
,
F.
Wang
,
Y.
Zhang
,
K. W.
Eliceiri
,
R. J.
Hamers
,
W. S.
Yan
,
S. Q.
Wei
,
M.
Tang
, and
S.
Jin
, “
Chemically Derived Kirigami of WSe2
,”
J. Am. Chem. Soc.
140
,
10980
10987
(
2018
).
32.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
33.
S. S.
Li
,
W. J.
Yin
,
Y. N.
Li
,
J. Y.
Sun
,
M. Q.
Zhu
,
Z. W.
Liu
, and
T.
Deng
, “
High sensitivity ultraviolet detection based on three-dimensional graphene field effect transistors decorated with TiO2 NPs
,”
Nanoscale
11
,
14912
14920
(
2019
).
34.
S. S.
Li
,
Y. N.
Li
,
J. Y.
Sun
,
F.
Su
,
W. J.
Yin
,
M. Q.
Zhu
, and
T.
Deng
, “
A self-powered vibration sensing element based on three-dimensional graphene field effect transistor
,”
Appl. Phys. Lett.
118
,
253105
(
2021
).
35.
D.
Karnaushenko
,
T.
Kang
,
V. K.
Bandari
,
F.
Zhu
, and
O. G.
Schmidt
, “
3D self-assembled microelectronic devices: Concepts, materials, applications
,”
Adv. Mater.
32
,
e1902994
(
2020
).
36.
B.
Zhao
,
Z.
Wan
,
Y.
Liu
,
J. Q.
Xu
,
X. D.
Yang
,
D. Y.
Shen
,
Z. C.
Zhang
,
C. H.
Guo
,
Q.
Qian
,
J.
Li
,
R. X.
Wu
,
Z. Y.
Lin
,
X. X.
Yan
,
B. L.
Li
,
Z. W.
Zhang
,
H. F.
Ma
,
B.
Li
,
X.
Chen
,
Y.
Qiao
,
I.
Shakir
,
Z.
Almutairi
,
F.
Wei
,
Y.
Zhang
,
X. Q.
Pan
,
Y.
Huang
,
Y.
Ping
,
X. D.
Duan
, and
X. F.
Duan
, “
High-order superlattices by rolling up van der Waals heterostructures
,”
Nature
591
,
385
390
(
2021
).
37.
D. H.
Zhao
,
Z. L.
Tian
,
H.
Liu
,
Z. H.
Gu
,
H.
Zhu
,
L.
Chen
,
Q. Q.
Sun
, and
D. W.
Zhang
, “
Realizing an omega-shaped gate MoS2 field-effect transistor based on a SiO2/MoS2 core-shell heterostructure
,”
ACS Appl. Mater. Interfaces
12
,
14308
14314
(
2020
).
38.
J. L.
Meng
,
G. L.
Wang
,
X. M.
Li
,
X. B.
Lu
,
J.
Zhang
,
H.
Yu
,
W.
Chen
,
L. J.
Du
,
M. Z.
Liao
,
J.
Zhao
,
P.
Chen
,
J. Q.
Zhu
,
X. D.
Bai
,
D. X.
Shi
, and
G. Y.
Zhang
, “
Rolling up a monolayer MoS2 sheet
,”
Small
12
,
3770
3774
(
2016
).
39.
L. M.
Viculis
,
J. J.
Mack
, and
R. B.
Kaner
, “
A chemical route to carbon nanoscrolls
,”
Science
299
,
1361
1361
(
2003
).
40.
T.
Deng
,
S. S.
Li
,
Y. N.
Li
,
Y.
Zhang
,
J. Y.
Sun
,
W. J.
Yin
,
W. D.
Wu
,
M. Q.
Zhu
,
Y. X.
Wang
, and
Z. W.
Liu
, “
Polarization-sensitive photodetectors based on three-dimensional molybdenum disulfide (MoS2) field-effect transistors
,”
Nanophotonics
9
,
4719
4728
(
2020
).
41.
J.
Zheng
,
H.
Liu
,
B.
Wu
,
Y.
Guo
,
T.
Wu
,
G.
Yu
,
Y.
Liu
, and
D.
Zhu
, “
Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen
,”
Adv. Mater.
23
,
2460
2463
(
2011
).
42.
Y.
Liu
,
Y.
Huang
, and
X. F.
Duan
, “
Van der Waals integration before and beyond two-dimensional materials
,”
Nature
567
,
323
333
(
2019
).
43.
S.
Hao
,
B. C.
Yang
, and
Y. L.
Gao
, “
Fracture-induced nanoscrolls from CVD-grown monolayer molybdenum disulfide
,”
Phys. Status Solidi RRL
10
,
549
553
(
2016
).
44.
V. B.
Shenoy
and
D. H.
Gracias
, “
Self-folding thin-film materials: From nanopolyhedra to graphene origami
,”
MRS Bull.
37
,
847
854
(
2012
).
45.
C.
Xu
,
X.
Wu
,
G.
Huang
, and
Y.
Mei
, “
Rolled‐up nanotechnology: Materials issue and geometry capability
,”
Adv. Mater. Technol.
4
,
1800486
(
2019
).
46.
J.
Li
,
J.
Zhang
,
W.
Gao
,
G.
Huang
,
Z.
Di
,
R.
Liu
,
J.
Wang
, and
Y.
Mei
, “
Dry-released nanotubes and nanoengines by particle-assisted rolling
,”
Adv. Mater.
25
,
3715
3721
(
2013
).
47.
Y.
Mei
,
G.
Huang
,
A. A.
Solovev
,
E. B.
Ureña
,
I.
Mönch
,
F.
Ding
,
T.
Reindl
,
R. K. Y.
Fu
,
P. K.
Chu
, and
O. G.
Schmidt
, “
Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers
,”
Adv. Mater.
20
,
4085
4090
(
2008
).
48.
V.
Prinz
,
V. A.
Seleznev
,
A. K.
Gutakovsky
,
A. V.
Chehovskiy
,
V. V.
Preobrazhenskii
,
M. A.
Putyato
, and
T. A.
Gavrilova
, “
Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays
,”
Phys. E
6
,
828
831
(
2000
).
49.
A. G.
Evans
and
J. W.
Hutchinson
, “
The thermomechanical integrity of thin films and multilayers
,”
Aeta Metall. Mater.
43
,
2507
2530
(
1995
).
50.
Q. L.
Guo
,
G.
Wang
,
D.
Chen
,
G. J.
Li
,
G. S.
Huang
,
M.
Zhang
,
X.
Wang
,
Y. F.
Mei
, and
Z. F.
Di
, “
Exceptional transport property in a rolled-up germanium tube
,”
Appl. Phys. Lett.
110
,
112104
(
2017
).
51.
A. A.
Solovev
,
Y.
Mei
,
E.
Bermudez Urena
,
G.
Huang
, and
O. G.
Schmidt
, “
Catalytic microtubular jet engines self-propelled by accumulated gas bubbles
,”
Small
5
,
1688
1692
(
2009
).
52.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
,
419
425
(
2013
).
53.
X.
Hou
,
R. B.
Pan
,
Q.
Yu
,
K.
Zhang
,
G. S.
Huang
,
Y. F.
Mei
,
D. W.
Zhang
, and
P.
Zhou
, “
Tubular 3D resistive random access memory based on rolled-up h-BN tube
,”
Small
15
,
e1803876
(
2019
).
54.
Y.
Liu
,
J.
Guo
,
E. B.
Zhu
,
L.
Liao
,
S. J.
Lee
,
M. N.
Ding
,
I.
Shakir
,
V.
Gambin
,
Y.
Huang
, and
X. F.
Duan
, “
Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions
,”
Nature
557
,
696
700
(
2018
).
55.
B.
Zhang
,
G.
Huang
,
L.
Wang
,
T.
Wang
,
L.
Liu
,
Z.
Di
,
X.
Liu
, and
Y.
Mei
, “
Rolled-up monolayer graphene tubular micromotors: enhanced performance and antibacterial property
,”
Chem. Asian J.
14
,
2479
2484
(
2019
).
56.
W. J.
Jian
,
X. L.
Cheng
,
Y. Y.
Huang
,
Y.
You
,
R.
Zhou
,
T. T.
Sun
, and
J.
Xu
, “
Arrays of ZnO/MoS2 nanocables and MoS2 nanotubes with phase engineering for bifunctional photoelectrochemical and electrochemical water splitting
,”
Chem. Eng. J
328
,
474
483
(
2017
).
57.
J. F.
Li
,
L.
Han
,
X. L.
Zhang
,
H. C.
Sun
,
X. J.
Liu
,
T.
Lu
,
Y. F.
Yao
, and
L. K.
Pan
, “
Multi-role TiO2 layer coated carbon@few-layered MoS2 nanotubes for durable lithium storage
,”
Chem. Eng. J
406
,
126873
(
2021
).
58.
S.
Zhuo
,
Y.
Xu
,
W.
Zhao
,
J.
Zhang
, and
B.
Zhang
, “
Hierarchical nanosheet-based MoS2 nanotubes fabricated by an anion-exchange reaction of MoO3-amine hybrid nanowires
,”
Angew. Chem.
125
,
8764
8768
(
2013
).
59.
H.
Kashani
,
C.
Kim
,
C.
Rudolf
,
F. K.
Perkins
,
E. R.
Cleveland
, and
W.
Kang
, “
An axially continuous graphene-copper wire for high-power transmission: Thermoelectrical characterization and mechanisms
,”
Adv. Mater.
33
,
e2104208
(
2021
).
60.
B. M.
Wu
,
X. D.
Wang
,
H. W.
Tang
,
W.
Jiang
,
Y.
Chen
,
Z.
Wang
,
Z. Z.
Cui
,
T.
Lin
,
H.
Shen
,
W. D.
Hu
,
X. J.
Meng
,
W. Z.
Bao
,
J. L.
Wang
, and
J. H.
Chu
, “
Multifunctional MoS2 transistors with electrolyte gel gating
,”
Small
16
,
2000420
(
2020
).
61.
C. S.
Liu
,
H. W.
Chen
,
S. Y.
Wang
,
Q.
Liu
,
Y. G.
Jiang
,
D. W.
Zhang
,
M.
Liu
, and
P.
Zhou
, “
Two-dimensional materials for next-generation computing technologies
,”
Nat. Nanotechnol.
15
,
545
557
(
2020
).
62.
Y.
Chen
,
J.
Lu
, and
Z.
Gao
, “
Structural and electronic study of nanoscrolls rolled up by a single graphene sheet
,”
J. Phys. Chem. C
111
,
1625
1630
(
2007
).
63.
C. H.
Chang
and
C.
Ortix
, “
Theoretical prediction of a giant anisotropic magnetoresistance in carbon nanoscrolls
,”
Nano Lett.
17
,
3076
3080
(
2017
).
64.
M. B.
Lien
,
C. H.
Liu
,
I. Y.
Chun
,
S.
Ravishankar
,
H.
Nien
,
M. M.
Zhou
,
J. A.
Fessler
,
Z. H.
Zhong
, and
T. B.
Norris
, “
Ranging and light field imaging with transparent photodetectors
,”
Nat. Photonics
14
,
143
148
(
2020
).
65.
Z.
Wang
,
P.
Wang
,
F.
Wang
,
J.
Ye
,
T.
He
,
F.
Wu
,
M.
Peng
,
P.
Wu
,
Y.
Chen
,
F.
Zhong
,
R.
Xie
,
Z.
Cui
,
L.
Shen
,
Q.
Zhang
,
L.
Gu
,
M.
Luo
,
Y.
Wang
,
H.
Chen
,
P.
Zhou
,
A.
Pan
,
X.
Zhou
,
L.
Zhang
, and
W.
Hu
, “
A noble metal dichalcogenide for high‐performance field‐effect transistors and broadband photodetectors
,”
Adv. Funct. Mater.
30
,
1907945
(
2020
).
66.
M.
Buscema
,
D. J.
Groenendijk
,
S. I.
Blanter
,
G. A.
Steele
,
H. S. J.
van der Zant
, and
A.
Castellanos-Gomez
, “
Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors
,”
Nano Lett.
14
,
3347
3352
(
2014
).
67.
N.
Flory
,
P.
Ma
,
Y.
Salamin
,
A.
Emboras
,
T.
Taniguchi
,
K.
Watanabe
,
J.
Leuthold
, and
L.
Novotny
, “
Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity
,”
Nat. Nanotechnol.
15
,
118
124
(
2020
).
68.
U. N.
Noumbe
,
C.
Greboval
,
C.
Livache
,
A.
Chu
,
H.
Majjad
,
L. E.
Parra Lopez
,
L. D. N.
Mouafo
,
B.
Doudin
,
S.
Berciaud
,
J.
Chaste
,
A.
Ouerghi
,
E.
Lhuillier
, and
J. F.
Dayen
, “
Reconfigurable 2D/0D p-n graphene/HgTe nanocrystal heterostructure for infrared detection
,”
ACS Nano
14
,
4567
4576
(
2020
).
69.
G. J.
Li
,
E. M.
Song
,
G. S.
Huang
,
Q. L.
Guo
,
F.
Ma
,
B.
Zhou
, and
Y. F.
Mei
, “
High-temperature-triggered thermally degradable electronics based on flexible silicon nanomembranes
,”
Adv. Funct. Mater.
28
,
1801448
(
2018
).
70.
N.
Bassik
,
G. M.
Stern
, and
D. H.
Gracias
, “
Self-folding graphene-polymer bilayers
,”
Appl. Phys. Lett.
106
,
203108
(
2015
).
71.
Q.
Huang
,
T.
Deng
,
W.
Xu
,
C.
Yoon
,
Z.
Qin
,
Y.
Lin
,
T.
Li
,
Y.
Yang
,
M.
Shen
,
S. M.
Thon
,
J. B.
Khurgin
, and
D. H.
Gracias
, “
Solvent responsive self‐folding of 3d photosensitive graphene architectures
,”
Adv. Intell. Syst.
2020
,
2000195
.
72.
W.
Xu
,
Z.
Qin
,
C.-T.
Chen
,
H. R.
Kwag
,
Q.
Ma
,
A.
Sarkar
,
M. J.
Buehler
, and
D. H.
Gracias
, “
Ultrathin thermoresponsive self-folding 3D graphene
,”
Sci. Adv.
3
,
e1701084
(
2017
).
73.
T. F.
Teshima
,
C. S.
Henderson
,
M.
Takamura
,
Y.
Ogawa
,
S.
Wang
,
Y.
Kashimura
,
S.
Sasaki
,
T.
Goto
,
H.
Nakashima
, and
Y.
Ueno
, “
Self-folded three-dimensional graphene with a tunable shape and conductivity
,”
Nano Lett.
19
,
461
470
(
2019
).
74.
O.
Erol
,
A.
Pantula
,
W.
Liu
, and
D. H.
Gracias
, “
Transformer Hydrogels: A Review
,”
Adv. Mater. Technol.
4
,
1900043
(
2019
).
75.
N.
Bassik
,
G. M.
Stern
, and
D. H.
Gracias
, “
Microassembly based on hands free origami with bidirectional curvature
,”
Appl. Phys. Lett.
95
,
091901
(
2009
).
76.
M. L.
Chen
,
X. D.
Sun
,
H.
Liu
,
H. W.
Wang
,
Q. B.
Zhu
,
S. S.
Wang
,
H. F.
Du
,
B. J.
Dong
,
J.
Zhang
,
Y.
Sun
,
S.
Qiu
,
T.
Alava
,
S.
Liu
,
D. M.
Sun
, and
Z.
Han
, “
A FinFET with one atomic layer channel
,”
Nat. Commun.
11
,
1205
(
2020
).
77.
M. E.
Beck
,
A.
Shylendra
,
V. K.
Sangwan
,
S. L.
Guo
,
W. A. G.
Rojas
,
H.
Yoo
,
H.
Bergeron
,
K.
Su
,
A. R.
Trivedi
, and
M. C.
Hersam
, “
Spiking neurons from tunable gaussian heterojunction transistors
,”
Nat. Commun.
11
,
1565
(
2020
).
78.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
191
(
2007
).
79.
G. W.
Yuan
,
D. J.
Lin
,
Y.
Wang
,
X. L.
Huang
,
W.
Chen
,
X. D.
Xie
,
J. Y.
Zong
,
Q. Q.
Yuan
,
H.
Zheng
,
D.
Wang
,
J.
Xu
,
S. C.
Li
,
Y.
Zhang
,
J.
Sun
,
X. X.
Xi
, and
L. B.
Gao
, “
Proton-assisted growth of ultra-flat graphene films
,”
Nature
577
,
204
208
(
2020
).
80.
B.
Deng
,
Z.
Pang
,
S.
Chen
,
X.
Li
,
C.
Meng
,
J.
Li
,
M.
Liu
,
J.
Wu
,
Y.
Qi
,
W.
Dang
,
H.
Yang
,
Y.
Zhang
,
J.
Zhang
,
N.
Kang
,
H.
Xu
,
Q.
Fu
,
X.
Qiu
,
P.
Gao
,
Y.
Wei
,
Z.
Liu
, and
H.
Peng
, “
Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates
,”
ACS Nano
11
,
12337
12345
(
2017
).
81.
J.
Yang
,
Z.
Zeng
,
J.
Kang
,
S.
Betzler
,
C.
Czarnik
,
X.
Zhang
,
C.
Ophus
,
C.
Yu
,
K.
Bustillo
,
M.
Pan
,
J.
Qiu
,
L. W.
Wang
, and
H.
Zheng
, “
Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates
,”
Nat. Mater.
18
,
970
976
(
2019
).
82.
K.
Kang
,
S. E.
Xie
,
L. J.
Huang
,
Y. M.
Han
,
P. Y.
Huang
,
K. F.
Mak
,
C. J.
Kim
,
D.
Muller
, and
J.
Park
, “
High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
,”
Nature
520
,
656
660
(
2015
).
83.
L.
Wang
,
X. Z.
Xu
,
L. N.
Zhang
,
R. X.
Qiao
,
M. H.
Wu
,
Z. C.
Wang
,
S.
Zhang
,
J.
Liang
,
Z. H.
Zhang
,
Z. B.
Zhang
,
W.
Chen
,
X. D.
Xie
,
J. Y.
Zong
,
Y. W.
Shan
,
Y.
Guo
,
M.
Willinger
,
H.
Wu
,
Q. Y.
Li
,
W. L.
Wang
,
P.
Gao
,
S. W.
Wu
,
Y.
Zhang
,
Y.
Jiang
,
D. P.
Yu
,
E. G.
Wang
,
X. D.
Bai
,
Z. J.
Wang
,
F.
Ding
, and
K. H.
Liu
, “
Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper
,”
Nature
570
,
91
95
(
2019
).
84.
Z.
Cai
,
Y.
Lai
,
S.
Zhao
,
R.
Zhang
,
J.
Tan
,
S.
Feng
,
J.
Zou
,
L.
Tang
,
J.
Lin
,
B.
Liu
, and
H. M.
Cheng
, “
Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides
,”
Natl. Sci. Rev.
8
,
nwaa115
(
2021
).
85.
L.
Sun
,
B.
Chen
,
W.
Wang
,
Y.
Li
,
X.
Zeng
,
H.
Liu
,
Y.
Liang
,
Z.
Zhao
,
A.
Cai
,
R.
Zhang
,
Y.
Zhu
,
Y.
Wang
,
Y.
Song
,
Q.
Ding
,
X.
Gao
,
H.
Peng
,
Z.
Li
,
L.
Lin
, and
Z.
Liu
, “
Toward epitaxial growth of misorientation-free graphene on Cu(111) foils
,”
ACS Nano
16
,
285
294
(
2022
).
86.
T. A.
Chen
,
C. P.
Chuu
,
C. C.
Tseng
,
C. K.
Wen
,
H. P.
Wong
,
S.
Pan
,
R.
Li
,
T. A.
Chao
,
W. C.
Chueh
,
Y.
Zhang
,
Q.
Fu
,
B. I.
Yakobson
,
W. H.
Chang
, and
L. J.
Li
, “
Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu
,”
Nature
579
(
111
),
219
223
(
2020
).
87.
Z.
Wang
,
H.
Xia
,
P.
Wang
,
X.
Zhou
,
C.
Liu
,
Q.
Zhang
,
F.
Wang
,
M.
Huang
,
S.
Chen
,
P.
Wu
,
Y.
Chen
,
J.
Ye
,
S.
Huang
,
H.
Yan
,
L.
Gu
,
J.
Miao
,
T.
Li
,
X.
Chen
,
W.
Lu
,
P.
Zhou
, and
W.
Hu
, “
Controllable doping in 2D layered materials
,”
Adv. Mater.
33
,
e2104942
(
2021
).
88.
B. M.
Wu
,
X. D.
Wang
,
H. W.
Tang
,
T.
Lin
,
H.
Shen
,
W. D.
Hu
,
X. J.
Meng
,
W. Z.
Bao
,
J. L.
Wang
, and
J. H.
Chu
, “
A study on ionic gated MoS2 phototransistors
,”
Sci. China Inf. Sci.
62
,
220405
(
2019
).
89.
J.
Wang
,
Q.
Yao
,
C. W.
Huang
,
X.
Zou
,
L.
Liao
,
S.
Chen
,
Z.
Fan
,
K.
Zhang
,
W.
Wu
,
X.
Xiao
,
C.
Jiang
, and
W. W.
Wu
, “
High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer
,”
Adv. Mater.
28
,
8302
8308
(
2016
).
90.
R.
Kappera
,
D.
Voiry
,
S. E.
Yalcin
,
B.
Branch
,
G.
Gupta
,
A. D.
Mohite
, and
M.
Chhowalla
, “
Phase-engineered low-resistance contacts for ultrathin MoS2 transistors
,”
Nat. Mater.
13
,
1128
1134
(
2014
).
91.
H.
Wang
,
Z.
Li
,
D.
Li
,
P.
Chen
,
L.
Pi
,
X.
Zhou
, and
T.
Zhai
, “
Van der Waals integration based on two‐dimensional materials for high‐performance infrared photodetectors
,”
Adv. Funct. Mater.
31
,
2103106
(
2021
).
92.
C.
Chen
,
P.
Song
,
F.
Meng
,
P.
Ou
,
X.
Liu
, and
J.
Song
, “
Effect of topological patterning on self-rolling of nanomembranes
,”
Nanotechnology
29
,
345301
(
2018
).
93.
C.
Chen
,
P.
Song
,
F.
Meng
,
X.
Li
,
X.
Liu
, and
J.
Song
, “
Quantitative analysis and predictive engineering of self-rolling of nanomembranes under anisotropic mismatch strain
,”
Nanotechnology
28
,
485302
(
2017
).
94.
F.
Gabler
,
D. D.
Karnaushenko
,
D.
Karnaushenko
, and
O. G.
Schmidt
, “
Magnetic origami creates high performance micro devices
,”
Nat. Commun.
10
,
3013
(
2019
).
95.
A.
Castellanos-Gomez
,
H. S. J.
van der Zant
, and
G. A.
Steele
, “
Folded MoS2 layers with reduced interlayer coupling
,”
Nano Res.
7
,
572
578
(
2014
).
96.
W.
Zhu
,
T.
Low
,
V.
Perebeinos
,
A. A.
Bol
,
Y.
Zhu
,
H.
Yan
,
J.
Tersoff
, and
P.
Avouris
, “
Structure and electronic transport in graphene wrinkles
,”
Nano Lett.
12
,
3431
3436
(
2012
).
97.
K.
Kim
,
Z.
Lee
,
B. D.
Malone
,
K. T.
Chan
,
B.
Alemán
,
W.
Regan
,
W.
Gannett
,
M. F.
Crommie
,
M. L.
Cohen
, and
A.
Zettl
, “
Multiply folded graphene
,”
Phys. Rev. B
83
,
245433
(
2011
).
98.
J.
Zang
,
S.
Ryu
,
N.
Pugno
,
Q.
Wang
,
Q.
Tu
,
M. J.
Buehler
, and
X.
Zhao
, “
Multifunctionality and control of the crumpling and unfolding of large-area graphene
,”
Nat. Mater.
12
,
321
325
(
2013
).
99.
Q.
Song
,
M.
An
,
X.
Chen
,
Z.
Peng
,
J.
Zang
, and
N.
Yang
, “
Adjustable thermal resistor by reversibly folding a graphene sheet
,”
Nanoscale
8
,
14943
14949
(
2016
).
100.
A. R.
Khan
,
T.
Lu
,
W.
Ma
,
Y.
Lu
, and
Y.
Liu
, “
Tunable optoelectronic properties of WS2 by local strain engineering and folding
,”
Adv. Electron. Mater.
6
,
1901381
(
2020
).
101.
J.
Annett
and
G. L.
Cross
, “
Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate
,”
Nature
535
,
271
275
(
2016
).
102.
Y.
Cao
,
V.
Fatemi
,
A.
Demir
,
S.
Fang
,
S. L.
Tomarken
,
J. Y.
Luo
,
J. D.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
,
R. C.
Ashoori
, and
P.
Jarillo-Herrero
, “
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
,”
Nature
556
,
80
84
(
2018
).
103.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
50
(
2018
).
104.
K.
Tran
,
G.
Moody
,
F.
Wu
,
X.
Lu
,
J.
Choi
,
K.
Kim
,
A.
Rai
,
D. A.
Sanchez
,
J.
Quan
,
A.
Singh
,
J.
Embley
,
A.
Zepeda
,
M.
Campbell
,
T.
Autry
,
T.
Taniguchi
,
K.
Watanabe
,
N.
Lu
,
S. K.
Banerjee
,
K. L.
Silverman
,
S.
Kim
,
E.
Tutuc
,
L.
Yang
,
A. H.
MacDonald
, and
X.
Li
, “
Evidence for moiré excitons in van der Waals heterostructures
,”
Nature
567
,
71
75
(
2019
).
105.
C.
Zhang
,
C.-P.
Chuu
,
X.
Ren
,
M.-Y.
Li
,
L.-J.
Li
,
C.
Jin
,
M.-Y.
Chou
, and
C.-K.
Shih
, “
Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers
,”
Sci. Adv.
3
,
e1601459
(
2017
).
106.
Q.
Tong
,
H.
Yu
,
Q.
Zhu
,
Y.
Wang
,
X.
Xu
, and
W.
Yao
, “
Topological mosaics in moiré superlattices of van der Waals heterobilayers
,”
Nat. Phys.
13
,
356
362
(
2017
).
107.
J.
Ji
,
X.
Song
,
J.
Liu
,
Z.
Yan
,
C.
Huo
,
S.
Zhang
,
M.
Su
,
L.
Liao
,
W.
Wang
,
Z.
Ni
,
Y.
Hao
, and
H.
Zeng
, “
Two-dimensional antimonene single crystals grown by van der Waals epitaxy
,”
Nat. Commun.
7
,
13352
(
2016
).
108.
R. A.
Doganov
,
E. C.
O'Farrell
,
S. P.
Koenig
,
Y.
Yeo
,
A.
Ziletti
,
A.
Carvalho
,
D. K.
Campbell
,
D. F.
Coker
,
K.
Watanabe
,
T.
Taniguchi
,
A. H.
Castro Neto
, and
B.
Ozyilmaz
, “
Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere
,”
Nat. Commun.
6
,
6647
(
2015
).
109.
S.
Sinha
,
Y.
Takabayashi
,
H.
Shinohara
, and
R.
Kitaura
, “
Simple fabrication of air-stable black phosphorus heterostructures with large-area hBN sheets grown by chemical vapor deposition method
,”
2D Mater.
3
,
035010
(
2016
).
You do not currently have access to this content.