Enhanced thermoelectric performance is restricted greatly by the interaction of various transport parameters, and this bottleneck urgently requires a solution. In this paper, first-principles calculations and Boltzmann transport theory are used to study the thermoelectric performance of two-dimensional (PbX)2(X=S,Se,Te) monolayers, and it is found that the thermoelectric performance can be enhanced significantly by applying a biaxial tensile strain. The room-temperature ZT values of the p-type (PbS)2,(PbSe)2, and (PbTe)2 in zigzag (armchair) directions are boosted as high as 1.97 (1.35), 2.26 (1.31), and 2.45 (1.59), respectively. The results show that it is mainly attributed to the significantly reduced phonon thermal conductivity. Moreover, the sharply reduced phonon thermal conductivity is mainly due to the enhancement of the phonon scattering rate caused by strong phonon anharmonicity. In addition, the excellent ZT value of the p-type (PbX)2(X=S,Se,Te) monolayer exhibits their potential application in the thermoelectric field, and the external strain has a good prospect in enhancing the thermoelectric performance.

1.
Y.
Pei
,
H.
Wang
, and
G.-J.
Snyder
,
Adv. Mater.
24
,
6125
(
2012
).
2.
Y.-L.
Yan
,
Y.-R.
Jin
,
G.-B.
Zhang
,
J.
Yang
,
Y.-X.
Wang
, and
W.
Ren
,
Sci. Rep.
7
,
10104
(
2017
).
3.
N.-S.
Chauhan
,
S.
Bathula
,
A.
Vishwakarma
,
R.
Bhardwaj
,
B.
Gahtori
,
A.
Kumar
, and
A.
Dhar
,
ACS Appl. Energy Mater
1
,
757
764
(
2018
).
4.
M.
Hong
,
Z.-G.
Chen
,
L.
Yang
,
Y.-C.
Zou
,
M.-S.
Dargusch
,
H.
Wang
, and
J.
Zou
,
Adv. Mater.
30
,
1705942
(
2018
).
5.
C.-M.
Jaworski
,
V.
Kulbachinskii
, and
J.-P.
Heremans
,
Phys. Rev. B
80
,
233201
(
2009
).
6.
T.-L.
Feng
,
L.
Lindsay
, and
S.-L.
Ruan
,
Phys. Rev. B
96
,
161201
(
2017
).
7.
W.-X.
Zhou
,
Y.
Cheng
,
K.-Q.
Chen
,
G.-F.
Xie
,
T.
Wang
, and
G.
Zhang
,
Adv. Funct. Mater.
30
,
1903829
(
2020
).
8.
D.-L.
Nika
,
E.-P.
Pokatilov
,
A.-S.
Askerov
, and
A.-A.
Balandin
,
Phys. Rev. B
79
,
155413
(
2009
).
9.
P.
Martin
,
Z.
Aksamija
,
E.
Pop
, and
U.
Ravaiolo
,
Phys. Rev. Lett.
102
,
125503
(
2009
).
10.
S.
Lee
,
K.
Kim
,
D.-H.
Kang
,
M.
Meyyappan
, and
C.-K.
Baek
,
Nano Lett.
19
,
747
(
2019
).
11.
G.-G.
Diez
,
J.-M.
Gordillo
,
M.-P.
Pujado
,
M.
Salleras
,
L.
Fonseca
,
A.
Morata
, and
A.-T.
Rubio
,
Nano Energy
67
,
104191
(
2020
).
12.
I.-D.
Noyan
,
G.
Gadea
,
M.
Salleras
,
M.
Pacios
,
C.
Calaza
,
A.
Stranz
,
M.
Dolcet
, and
A.
Morata
,
Nano Energy
57
,
492
(
2019
).
13.
P.-D.
Bhuyan
,
Y.
Sonvane
,
P.-N.
Gajjar
,
R.
Ahuja
, and
S.-K.
Gupta
,
New J. Chem.
44
,
15617
(
2020
).
14.
H.-P.
Xiao
,
W.
Cao
,
T.
Ouyang
,
X.-Y.
Xu
,
Y.-C.
Ding
, and
J.-X.
Zhong
,
Appl. Phys. Lett.
112
,
233107
(
2018
).
15.
S.
Deng
,
X.
Cai
,
Y.
Zhang
, and
L.-J.
Li
,
Carbon
145
,
622
(
2019
).
16.
Y.-B.
Dai
,
K.
Luo
, and
X.-F.
Wang
,
Sci. Rep.
10
,
9105
(
2020
).
17.
P.-A.
Zong
,
P.
Zhang
,
S.-J.
Yin
,
Y.-J.
Huang
,
Y.-L.
Wang
, and
C.-L.
Wan
,
Adv. Electron. Mater.
5
,
1800842
(
2019
).
18.
W.-Y.
Lee
,
N.-W.
Park
,
S.-Y.
Kang
,
G.-S.
Kim
,
J.-H.
Koh
,
E.
Saitoh
, and
S.-K.
Lee
,
J. Phys. Chem. C
123
(
23
),
14187
(
2019
).
19.
R.
Ghiyasi
,
M.
Milich
,
J.
Tomko
,
P.-E.
Hopkins
, and
M.
Karppinen
,
Appl. Phys. Lett.
118
(
21
),
211903
(
2021
).
20.
N.-W.
Park
,
W.-Y.
Lee
,
Y.-S.
Yoon
,
G.-S.
Kim
,
Y.-G.
Yoon
, and
S.-K.
Lee
,
ACS Appl. Mater. Interfaces
11
,
23303
(
2019
).
21.
Y.-J.
Zeng
,
D.
Wu
,
X.-H.
Cao
,
W.-X.
Zhou
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Adv. Funct. Mater.
30
,
1903873
(
2020
).
22.
D.
Wu
,
L.
Huang
,
P.-Z.
Jia
,
X.-H.
Cao
,
Z.-Q.
Fan
,
W.-X.
Zhou
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
119
,
063503
(
2021
).
23.
K.
Wang
,
E.
Meyhofer
, and
P.
Reddy
,
Adv. Funct. Mater.
30
(
8
),
1904534
(
2020
).
24.
D.
Wu
,
X.-H.
Cao
,
S.-Z.
Chen
,
L.-M.
Tang
,
Y.-X.
Feng
,
K.-Q.
Chen
, and
W.-X.
Zhou
,
J. Mater. Chem. A
7
,
19037
(
2019
).
25.
X.-H.
Cao
,
D.
Wu
,
J.
Zeng
,
N.-N.
Luo
,
W.-X.
Zhou
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
119
,
263901
(
2021
).
26.
A.
Suwardi
,
J.
Cao
,
L.
Hu
,
F.-X.
Wei
,
J.
Wu
,
Y.-S.
Zhao
,
S.-H.
Lim
,
L.
Yang
,
X.-Y.
Tan
,
S.-W.
Chien
,
Y.
Yin
,
W.-X.
Zhou
,
W.
Nancy
,
X.
Wang
,
S.-H.
Lim
,
X.-P.
Ni
,
D.-F.
Li
,
Q.-Y.
Yan
,
Y.
Zheng
, and
G.
Zhang
,
J. Mater. Chem. A
8
,
18880
(
2020
).
27.
H.
Pan
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Phys. Rev. B
105
,
064401
(
2022
).
28.
X.-K.
Chen
and
K.-Q.
Chen
,
J. Phys.: Condens. Matter
32
,
153002
(
2020
).
29.
A.
Suwardi
,
J.
Cao
,
Y.
Zhao
,
J.
Wu
,
S.-W.
Chien
,
X.-Y.
Tan
,
L.
Hu
,
X.
Wang
,
W.
Wang
,
D.
Li
,
Y.
Yin
,
W.-X.
Zhou
,
D.-V.
Repaka
,
J.
Chen
,
Y.
Zheng
,
Q.
Yan
,
G.
Zhang
, and
J.
Xua
,
Mater. Today Phys.
14
,
100239
(
2020
).
30.
Y.-J.
Zeng
,
Y.-X.
Feng
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
118
,
183103
(
2021
).
31.
P.-Z.
Jia
,
D.
Wu
,
Q.-Q.
Zhang
,
W.-X.
Zhou
,
Z.-Q.
Fan
,
Y.-X.
Feng
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Phys. Status Solidi RRL
14
,
2000333
(
2020
).
32.
A.-K.
Singh
and
R.-G.
Hennig
,
Appl. Phys. Lett.
105
,
042103
(
2014
).
33.
M.-V.
Strikha
,
M.
Yelisieiev
, and
A.-N.
Morozovska
,
Appl. Phys. Lett.
119
,
042102
(
2021
).
34.
Q.-G.
Gao
,
C.-F.
Zhang
,
Z.-C.
Yi
,
X.-J.
Pan
,
C.
Feng
,
L.-M.
Liu
,
X.-F.
Li
, and
Y.-Q.
Wu
,
Appl. Phys. Lett.
118
,
153103
(
2021
).
35.
A.-N.
Gandi
and
U.
Schwingenschlogl
,
Chem. Mater.
26
,
6628
(
2014
).
36.
H.
Babaei
,
J.-M.
Khodadadi
, and
S.
Sinha
,
Appl. Phys. Lett.
105
,
193901
(
2014
).
37.
P.-Z.
jia
,
Y.-J.
Zeng
,
D.
Wu
,
H.
Pan
,
X.-H.
Cao
,
W.-X.
Zhou
,
Z.-X.
Xie
,
J.-X.
Zhang
, and
K.-Q.
Chen
,
J. Phys.: Condens. Matter
32
,
055302
(
2020
).
38.
B.-S.
Sa
,
Z.-M.
Sun
, and
B.
Wu
,
Nanoscale
8
,
1169
(
2016
).
39.
P.-F.
Liu
,
T.
Bo
,
J.-P.
Xu
,
W.
Yin
,
J.-R.
Zhang
,
F.-W.
Wang
,
O.
Eriksson
, and
B.-T.
Wang
,
Phys. Rev. B
98
,
235426
(
2018
).
40.
X.-L.
Zhu
,
C.-H.
Hou
,
P.
Zhang
,
P.-F.
Liu
,
G.-F.
Xie
, and
B.-T.
Wang
,
J. Phys. Chem. C
124
,
1812
(
2020
).
41.
B.
Ram
,
A.
Manjanath
, and
A.-K.
Singh
,
2D Mater.
3
,
015009
(
2016
).
42.
X.-K.
Chen
,
X.-Y.
Hu
,
P.
Jia
,
Z.-X.
Xie
, and
J.
Liu
,
Int. J. Mech. Sci.
206
,
106576
(
2021
).
43.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
44.
P.-E.
Blochl
,
Phys. Rev. B
50
,
17953
(
1994
).
45.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
46.
A.-H.
Romero
,
E.-K.
Gross
,
M.-J.
Verstraete
, and
O.
Hellman
,
Phys. Rev. B
91
,
214310
(
2015
).
47.
A.
Lou
,
Q.-B.
Liu
, and
H.-H.
Fu
,
Phys. Rev. B
105
,
075431
(
2022
).
48.
M.,-B.
Maccioni
,
R.
Farris
, and
V.
Fiorentini
,
Phys. Rev. B
98
,
220301
(
2018
).
49.
N.-K.
Ravichandran
and
D.
Broido
,
Phys. Rev. B
98
,
085205
(
2018
).
50.
B.-J.
Dong
,
Z.-H.
Wang
,
N.-T.
Hung
,
A.-R.
Oganov
,
T.
Yang
,
R.
Saito
, and
Z.-D.
Zhang
,
Phys. Rev. Mater.
3
,
013405
(
2019
).

Supplementary Material

You do not currently have access to this content.