Changing the microstructure properties of a space–time metamaterial while a wave is propagating through it, in general, requires addition or removal of energy, which can be of an exponential form depending on the type of modulation. This limits the realization and application of space–time metamaterials. We resolve this issue by introducing a mechanism of conserving energy at temporal metasurfaces in a non-linear setting. The idea is first demonstrated by considering a wave-packet propagating in a discrete medium of a one-dimensional (1D) chain of springs and masses, where using our energy conserving mechanism, we show that the spring stiffness can be incremented at several time interfaces and the energy will still be conserved. We then consider an interesting application of time-reversed imaging in 1D and two-dimensional (2D) spring–mass systems with a wave packet traveling in the homogenized regime. Our numerical simulations show that, in 1D, when the wave packet hits the time-interface, two sets of waves are generated, one traveling forward in time and the other traveling backward. The time-reversed waves re-converge at the location of the source, and we observe its regeneration. In 2D, we use more complicated initial shapes and, even then, we observe regeneration of the original image or source. Thus, we achieve time-reversed imaging with conservation of energy in a non-linear system. The energy conserving mechanism can be easily extended to continuum media. Some possible ideas and concerns in experimental realization of space–time media are highlighted in conclusion and in the supplementary material.

1.
V.
Bacot
,
M.
Labousse
,
A.
Eddi
,
M.
Fink
, and
E.
Fort
, “
Time reversal and holography with spacetime transformations
,”
Nat. Phys.
12
,
972
977
(
2016
).
2.
A.
Akbarzadeh
,
N.
Chamanara
, and
C.
Caloz
, “
Inverse prism based on temporal discontinuity and spatial dispersion
,”
Opt. Lett.
43
,
3297
(
2018
).
3.
M. W.
McCall
,
A.
Favaro
,
P.
Kinsler
, and
A.
Boardman
, “
A spacetime cloak, or a history editor
,”
J. Opt.
13
,
024003
(
2011
).
4.
L.
Zeng
,
J.
Xu
,
C.
Wang
,
J.
Zhang
,
Y.
Zhao
,
J.
Zeng
, and
R.
Song
, “
Photonic time crystals
,”
Sci. Rep.
7
,
17165
(
2017
).
5.
S.
Taravati
,
N.
Chamanara
, and
C.
Caloz
, “
Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator
,”
Phys. Rev. B
96
,
165144
(
2017
).
6.
C.
Caloz
,
A.
Alu
,
S.
Tretyakov
,
D.
Sounas
,
K.
Achouri
, and
Z.-L.
Deck-Léger
, “
Electromagnetic nonreciprocity
,”
Phys. Rev. Appl.
10
,
047001
(
2018
).
7.
K.
Fang
,
Z.
Yu
, and
S.
Fan
, “
Realizing effective magnetic field for photons by controlling the phase of dynamic modulation
,”
Nat. Photonics
6
,
782
787
(
2012
).
8.
O.
Boada
,
A.
Celi
,
J. I.
Latorre
, and
M.
Lewenstein
, “
Quantum simulation of an extra dimension
,”
Phys. Rev. Lett.
108
,
133001
(
2012
).
9.
A.
Celi
,
P.
Massignan
,
J.
Ruseckas
,
N.
Goldman
,
I. B.
Spielman
,
G.
Juzeliunas
, and
M.
Lewenstein
, “
Synthetic gauge fields in synthetic dimensions
,”
Phys. Rev. Lett.
112
,
043001
(
2014
).
10.
T.
Ozawa
,
H. M.
Price
,
N.
Goldman
,
O.
Zilberberg
, and
I.
Carusotto
, “
Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics
,”
Phys. Rev. A
93
,
043827
(
2016
).
11.
D.-W.
Zhang
, “
Simulating Weyl points and nodal loops in an optical superlattice
,”
Quantum Inf. Process.
15
,
4477
4487
(
2016
).
12.
C.
Caloz
and
Z.-L.
Deck-Léger
, “
Spacetime metamaterials—Part I: General concepts
,”
IEEE Trans. Antennas Propag.
68
,
1569
1582
(
2020
).
13.
C.
Caloz
and
Z.-L.
Deck-Léger
, “
Spacetime metamaterials—Part II: Theory and Applications
,”
IEEE Trans. Antennas Propag.
68
,
1583
1598
(
2020
).
14.
K. A.
Lurie
,
An Introduction to the Mathematical Theory of Dynamic Materials
(
Springer
,
2007
), Vol.
15
.
15.
E.
Cassedy
, “
Dispersion relations in time-space periodic media Part II—Unstable interactions
,”
Proc. IEEE
55
,
1154
1168
(
1967
).
16.
K. A.
Lurie
and
V. V.
Yakovlev
, “
Energy accumulation in waves propagating in space and time-varying transmission lines
,”
IEEE Antennas Wireless Propag. Lett.
15
,
1681
1684
(
2016
).
17.
M.
Tanter
,
J.-L.
Thomas
, and
M.
Fink
, “
Influence of boundary conditions on time-reversal focusing through heterogeneous media
,”
Appl. Phys. Lett.
72
,
2511
2513
(
1998
).
18.
K. A.
Lurie
and
S. L.
Weekes
, “
Wave propagation and energy exchange in a spatio-temporal material composite with rectangular microstructure
,”
J. Math. Anal. Appl.
314
,
286
310
(
2006
).
19.
O.
Mattei
and
G. W.
Milton
, “
Field patterns without blow up
,”
New J. Phys.
19
,
093022
(
2017
).
20.
A. B.
Movchan
,
N. V.
Movchan
,
I. S.
Jones
,
G. W.
Milton
, and
H. M.
Nguyen
, “
Frontal waves and transmissions for temporal laminates and imperfect chiral interfaces
,”
Philos. Trans. R. Soc. A
380
,
20210385
(
2022
).
21.
D.
Torrent
,
W. J.
Parnell
, and
A. N.
Norris
, “
Loss compensation in time-dependent elastic metamaterials
,”
Phys. Rev. B
97
,
014105
(
2018
).

Supplementary Material

You do not currently have access to this content.