We present an interband cascade infrared photodetector based on Ga-free type-II superlattice absorbers. Substituting the more standard InAs/GaSb superlattice for a Ga-free superlattice with InAs/InAsSb requires an inverted carrier extraction path. A hole-ladder in the electron-barrier, instead of an electron-ladder in the hole-barrier, is employed to achieve photovoltaic operation. At elevated temperatures, seven negative-differential-conductance (NDC) regions are observed that arise from electrons tunneling through the electron barriers of the seven cascade stages. The detector operates in the photovoltaic mode at room temperature with a cutoff wavelength of 8.5 μm. At the NDC regions, the device features responsivity peaks under laser illumination reaching 0.45 A/W at room temperature at λ = 5.27 μm. This exceeds its highest measured low-temperature value of 0.22 A/W at this wavelength by a factor of 2.

1.
J. V.
Li
,
R. Q.
Yang
,
C. J.
Hill
, and
S. L.
Chuang
, “
Interband cascade detectors with room temperature photovoltaic operation
,”
Appl. Phys. Lett.
86
,
101102
(
2005
).
2.
G. A.
Sai-Halasz
,
R.
Tsu
, and
L.
Esaki
, “
A new semiconductor superlattice
,”
Appl. Phys. Lett.
30
,
651
(
1977
).
3.
H.
Lotfi
,
L.
Li
,
L.
Lei
,
Y.
Jiang
,
R. Q.
Yang
,
J. F.
Klem
, and
M. B.
Johnson
, “
Short-wavelength interband cascade infrared photodetectors operating above room temperature
,”
J. Appl. Phys.
119
,
023105
(
2016
).
4.
H.
Lotfi
,
L.
Li
,
H.
Ye
,
R. T.
Hinkey
,
L.
Lei
,
R. Q.
Yang
,
J. C.
Keay
,
T. D.
Mishima
,
M. B.
Santos
, and
M. B.
Johnson
, “
Interband cascade infrared photodetectors with long and very-long cutoff wavelengths
,”
Infrared Phys. Technol.
70
,
162
(
2015
).
5.
R. T.
Hinkey
,
Z.
Tian
,
Y.
Qiu
,
J. M.
Fastenau
,
W. K.
Liu
,
R. Q.
Yang
,
D.
Lubyshev
, and
M. B.
Johnson
, “
Interband cascade infrared photodetectors with enhanced electron barriers and p -type superlattice absorbers
,”
J. Appl. Phys.
111
,
024510
(
2012
).
6.
R. T.
Hinkey
and
R. Q.
Yang
, “
Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors
,”
J. Appl. Phys.
114
,
104506
(
2013
).
7.
N.
Gautam
,
S.
Myers
,
A. V.
Barve
,
B.
Klein
,
E. P.
Smith
,
D. R.
Rhiger
,
L. R.
Dawson
, and
S.
Krishna
, “
High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice
,”
Appl. Phys. Lett.
101
,
021106
(
2012
).
8.
D. L.
Smith
and
C.
Mailhiot
, “
Proposal for strained type II superlattice infrared detectors
,”
J. Appl. Phys.
62
,
2545
(
1987
).
9.
K.
Hackiewicz
,
J.
Rutkowski
, and
P.
Martyniuk
, “
Optimal absorber thickness in interband cascade photodetectors
,”
Infrared Phys. Technol.
95
,
136
(
2018
).
10.
W.
Huang
,
L.
Li
,
L.
Lei
,
J. A.
Massengale
,
T. D.
Mishima
,
M. B.
Santos
, and
R. Q.
Yang
, “
Gain and resonant tunneling in interband cascade IR photodetectors
,”
Proc. SPIE
10540
,
105400E
(
2018
).
11.
P.
Martyniuk
,
J.
Antoszewski
,
M.
Martyniuk
,
L.
Faraone
, and
A.
Rogalski
, “
New concepts in infrared photodetector designs
,”
Appl. Phys. Rev.
1
,
41102
(
2014
).
12.
L.
Lei
,
L.
Li
,
H.
Lotfi
,
H.
Ye
,
R. Q.
Yang
,
T. D.
Mishima
,
M. B.
Santos
, and
M. B.
Johnson
, “
Midwavelength interband cascade infrared photodetectors with superlattice absorbers and gain
,”
Opt. Eng.
57
,
011006
(
2017
).
13.
R. Q.
Yang
,
Z.
Tian
,
Z.
Cai
,
J. F.
Klem
,
M. B.
Johnson
, and
H. C.
Liu
, “
Interband-cascade infrared photodetectors with superlattice absorbers
,”
J. Appl. Phys.
107
,
054514
(
2010
).
14.
W.
Huang
and
R. Q.
Yang
, “
Limiting factors and efficiencies of narrow bandgap single-absorber and multi-stage interband cascade thermophotovoltaic cells under monochromatic light illumination
,”
J. Appl. Phys.
126
,
045714
(
2019
).
15.
C.
Cervera
,
J. B.
Rodriguez
,
J. P.
Perez
,
H.
At-Kaci
,
R.
Chaghi
,
L.
Konczewicz
,
S.
Contreras
, and
P.
Christol
, “
Unambiguous determination of carrier concentration and mobility for InAs/GaSb superlattice photodiode optimization
,”
J. Appl. Phys.
106
,
033709
(
2009
).
16.
R.
Rehm
,
M.
Walther
,
J.
Schmitz
,
J.
Fleißner
,
F.
Fuchs
,
J.
Ziegler
, and
W.
Cabanski
, “
InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging
,”
Opto-Electron. Rev.
14
,
19
(
2006
).
17.
H.
Mohseni
,
V.
Litvinov
, and
M.
Razeghi
, “
Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices
,”
Phys. Rev. B.
58
,
15378
(
1998
).
18.
P.
Mishra
,
R. K.
Pandey
,
S.
Kumari
,
A.
Pandey
,
S.
Dalal
,
R.
Sankarasubramanian
,
S.
Channagiri
,
S. K.
Jangir
,
R.
Raman
,
T.
Srinivasan
, and
D. V. S.
Rao
, “
Interface engineered MBE grown InAs/GaSb based type-II superlattice heterostructures
,”
J. Alloys Compd.
889
,
161692
(
2021
).
19.
A.
Chandola
,
R.
Pino
, and
P. S.
Dutta
, “
Below bandgap optical absorption in tellurium-doped GaSb
,”
Semicond. Sci. Technol.
20
,
886
(
2005
).
20.
B.
Klein
,
N.
Gautam
,
E.
Plis
,
T.
Schuler-Sandy
,
T. J.
Rotter
,
S.
Krishna
,
B. C.
Connelly
,
G. D.
Metcalfe
,
P.
Shen
, and
M.
Wraback
, “
Carrier lifetime studies in midwave infrared type-II InAs/GaSb strained layer superlattice
,”
J. Vac. Sci. Technol. B
32
,
02C101
(
2014
).
21.
D.
Donetsky
,
G.
Belenky
,
S.
Svensson
, and
S.
Suchalkin
, “
Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials
,”
Appl. Phys. Lett.
97
,
052108
(
2010
).
22.
K.
Hackiewicz
and
P.
Martyniuk
, “
Type-II InAs/GaSb (InAsSb) superlattices for interband cascade midwavelength detectors
,”
Opt. Eng.
57
,
027106
(
2018
).
23.
E. H.
Steenbergen
,
B. C.
Connelly
,
G. D.
Metcalfe
,
H.
Shen
,
M.
Wraback
,
D.
Lubyshev
,
Y.
Qiu
,
J. M.
Fastenau
,
A. W. K.
Liu
,
S.
Elhamri
,
O. O.
Cellek
, and
Y. H.
Zhang
, “
Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb
,”
Appl. Phys. Lett.
99
,
251110
(
2011
).
24.
A.
Trellakis
,
T.
Zibold
,
T.
Andlauer
,
S.
Birner
,
R. K.
Smith
,
R.
Morschl
, and
P.
Vogl
, “
The 3D nanometer device project nextnano: Concepts, methods, results
,”
J. Comput. Electron.
5
,
285
(
2006
).
25.
B.
Jusserand
,
P.
Voisin
,
M.
Voos
,
L. L.
Chang
,
E. E.
Mendez
, and
L.
Esaki
, “
Raman scattering in GaSb-AlSb strained layer superlattices
,”
Appl. Phys. Lett.
46
,
678
(
1985
).
26.
E. A.
Plis
,
M. N.
Kutty
, and
S.
Krishna
, “
Passivation techniques for InAs/GaSb strained layer superlattice detectors
,”
Laser Photonics Rev.
7
,
45
(
2013
).
27.
E.
Plis
,
M. N.
Kutty
,
S.
Myers
,
H. S.
Kim
,
N.
Gautam
,
L. R.
Dawson
, and
S.
Krishna
, “
Passivation of long-wave infrared InAs/GaSb strained layer superlattice detectors
,”
Infrared Phys. Technol.
54
,
252
(
2011
).
28.
A.
Rogalski
, “
InAs/GaSb type-II superlattices versus HgCdTe ternary alloys: Future prospect
,”
Proc. SPIE
10433
,
104330U
(
2017
).
29.
C. L.
Canedy
,
E. H.
Aifer
,
J. H.
Warner
,
I.
Vurgaftman
,
E. M.
Jackson
,
J. G.
Tischler
,
S. P.
Powell
,
K.
Olver
,
J. R.
Meyer
, and
W. E.
Tennant
, “
Controlling dark current in type-II superlattice photodiodes
,”
Infrared Phys. Technol.
52
,
326
(
2009
).
30.
J. A.
Nolde
,
R.
Stine
,
E. M.
Jackson
,
C. L.
Canedy
,
I.
Vurgaftman
,
S. I.
Maximenko
,
C. A.
Affouda
,
M.
Gonzalez
,
E. H.
Aifer
, and
J. R.
Meyer
, “
Effect of the oxide-semiconductor interface on the passivation of hybrid type-II superlattice long-wave infrared photodiodes
,”
Proc. SPIE
7945
,
79451Y
(
2011
).
31.
Z. B.
Tian
,
S. E.
Godoy
,
H. S.
Kim
,
T.
Schuler-Sandy
,
J. A.
Montoya
, and
S.
Krishna
, “
High operating temperature interband cascade focal plane arrays
,”
Appl. Phys. Lett.
105
,
051109
(
2014
).
32.
L.
Lei
,
L.
Li
,
W.
Huang
,
J. A.
Massengale
,
H.
Ye
,
H.
Lotfi
,
R. Q.
Yang
,
T. D.
Mishima
,
M. B.
Santos
, and
M. B.
Johnson
, “
Resonant tunneling and multiple negative differential conductance features in long wavelength interband cascade infrared photodetectors
,”
Appl. Phys. Lett.
111
,
113504
(
2017
).
33.
G.
Shen
,
Y.
Zhao
,
J.
Sun
,
J.
Liu
,
Z.
Dong
,
H.
Xie
,
F.
Wang
, and
J.
Yang
, “
A comparison of defects between InAs single crystals grown by LEC and VGF methods
,”
J. Electron. Mater.
49
,
5104
(
2020
).
34.
G.
Shen
,
Y.
Zhao
,
Z.
Dong
,
J.
Liu
,
H.
Xie
,
Y.
Bai
, and
X.
Chen
, “
Enhancement of below gap transmission of InAs single crystal via suppression of native defects
,”
Mater. Res. Express
4
,
036203
(
2017
).
35.
D. Z.
Ting
,
A.
Khoshakhlagh
,
A.
Soibel
, and
S. D.
Gunapala
, “
Long wavelength InAs/InAsSb infrared superlattice challenges: A theoretical investigation
,”
J. Electron. Mater.
49
,
6936
(
2020
).
36.
R. Q.
Yang
, “
Equivalent circuit and fundamental limit of multi-stage infrared photodetectors
,”
Appl. Phys. Lett.
119
,
141107
(
2021
).
You do not currently have access to this content.