Graphene (Gr)–transition metal dichalcogenide (TMDC) hybrids are promising platforms for achieving sensitive and ultra-fast photodetection. The process of photo-detection in such van der Waals hybrids is usually dictated by the formation of excitons followed by the transfer of charge and energy from the TMDC layer to graphene, but they have not been explored simultaneously in the same device before. In this work, we have investigated optically excited Gr–WS2 (tungsten disulfide) heterostructures using both standard electrical transport and Johnson noise thermometry. At large negative gate voltages, the experimentally observed photoresponse cannot be explained from conventional photogating but was found to host an increase in electron temperature as large as 4 K. Time dependence of the transport and the noise reveals that the change in temperature and photoresistance can originate from distinct microscopic processes. The findings can be exploited for the development of Gr–TMDC based ultra-fast bolometers.

1.
K.
Roy
,
M.
Padmanabhan
,
S.
Goswami
,
T. P.
Sai
,
G.
Ramalingam
,
S.
Raghavan
, and
A.
Ghosh
, “
Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices
,”
Nat. Nanotechnol.
8
,
826
(
2013
).
2.
K.
Roy
,
M.
Padmanabhan
,
S.
Goswami
,
T. P.
Sai
,
S.
Kaushal
, and
A.
Ghosh
, “
Optically active heterostructures of graphene and ultrathin MoS2
,”
Solid State Commun.
175–176
,
35
(
2013
).
3.
M.
Massicotte
,
P.
Schmidt
,
F.
Vialla
,
K. G.
Schädler
,
A.
Reserbat-Plantey
,
K.
Watanabe
,
T.
Taniguchi
,
K.-J.
Tielrooij
, and
F. H.
Koppens
, “
Picosecond photoresponse in van der Waals heterostructures
,”
Nat. Nanotechnol.
11
,
42
(
2016
).
4.
K.
Roy
,
T.
Ahmed
,
H.
Dubey
,
T. P.
Sai
,
R.
Kashid
,
S.
Maliakal
,
K.
Hsieh
,
S.
Shamim
, and
A.
Ghosh
, “
Number-resolved single-photon detection with ultralow noise van der Waals hybrid
,”
Adv. Mater.
30
,
1704412
(
2018
).
5.
A.
Pradhan
,
A.
Roy
,
S.
Tripathi
,
A.
Som
,
D.
Sarkar
,
J. K.
Mishra
,
K.
Roy
,
T.
Pradeep
,
N.
Ravishankar
, and
A.
Ghosh
, “
Ultra-high sensitivity infra-red detection and temperature effects in a graphene–tellurium nanowire binary hybrid
,”
Nanoscale
9
,
9284
(
2017
).
6.
Z.
Hu
,
X.
Liu
,
P. L.
Hernández-Martínez
,
S.
Zhang
,
P.
Gu
,
W.
Du
,
W.
Xu
,
H. V.
Demir
,
H.
Liu
, and
Q.
Xiong
, “
Interfacial charge and energy transfer in van der Waals heterojunctions
,”
InfoMat
4
,
e12290
(
2022
).
7.
H.
Yu
,
H.
Li
,
Y.
Zhou
,
S.
Zhou
, and
P.
Wang
, “
Ultra-sensitive hydrogen peroxide sensor based on peroxiredoxin and fluorescence resonance energy transfer
,”
Appl. Sci.
10
,
3508
(
2020
).
8.
A.
Raja
,
A.
Montoya-Castillo
,
J.
Zultak
,
X.-X.
Zhang
,
Z.
Ye
,
C.
Roquelet
,
D. A.
Chenet
,
A. M.
Van Der Zande
,
P.
Huang
,
S.
Jockusch
 et al, “
Energy transfer from quantum dots to graphene and MoS2: The role of absorption and screening in two-dimensional materials
,”
Nano Lett.
16
,
2328
(
2016
).
9.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
John Wiley & Sons
,
2008
).
10.
B.
Guzelturk
and
H. V.
Demir
, “
Near-field energy transfer using nanoemitters for optoelectronics
,”
Adv. Funct. Mater.
26
,
8158
(
2016
).
11.
S.
Fu
,
I.
du Fossé
,
X.
Jia
,
J.
Xu
,
X.
Yu
,
H.
Zhang
,
W.
Zheng
,
S.
Krasel
,
Z.
Chen
,
Z. M.
Wang
 et al, “
Long-lived charge separation following pump-wavelength-dependent ultrafast charge transfer in graphene/WS2 heterostructures
,”
Sci. Adv.
7
,
eabd9061
(
2021
).
12.
J.
He
,
N.
Kumar
,
M. Z.
Bellus
,
H.-Y.
Chiu
,
D.
He
,
Y.
Wang
, and
H.
Zhao
, “
Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures
,”
Nat. Commun.
5
,
5622
(
2014
).
13.
S.
Mitra
,
S.
Kakkar
,
T.
Ahmed
, and
A.
Ghosh
, “
Graphene–WS2 van der Waals hybrid heterostructure for photodetector and memory device applications
,”
Phys. Rev. Appl.
14
,
064029
(
2020
).
14.
D.
Kozawa
,
A.
Carvalho
,
I.
Verzhbitskiy
,
F.
Giustiniano
,
Y.
Miyauchi
,
S.
Mouri
,
A.
Castro Neto
,
K.
Matsuda
, and
G.
Eda
, “
Evidence for fast interlayer energy transfer in MoSe2–WS2 heterostructures
,”
Nano Lett.
16
,
4087
(
2016
).
15.
C.
Manolatou
,
H.
Wang
,
W.
Chan
,
S.
Tiwari
, and
F.
Rana
, “
Radiative and nonradiative exciton energy transfer in monolayers of two-dimensional group-VI transition metal dichalcogenides
,”
Phys. Rev. B
93
,
155422
(
2016
).
16.
D.
Polder
and
M.
Van Hove
, “
Theory of radiative heat transfer between closely spaced bodies
,”
Phys. Rev. B
4
,
3303
(
1971
).
17.
F.
Laquai
,
Y.-S.
Park
,
J.-J.
Kim
, and
T.
Basché
, “
Excitation energy transfer in organic materials: From fundamentals to optoelectronic devices
,”
Macromol. Rapid Commun.
30
,
1203
(
2009
).
18.
K.
Feron
,
W. J.
Belcher
,
C. J.
Fell
, and
P. C.
Dastoor
, “
Organic solar cells: Understanding the role of Förster resonance energy transfer
,”
Int. J. Mol. Sci.
13
,
17019
(
2012
).
19.
G.
Froehlicher
,
E.
Lorchat
, and
S.
Berciaud
, “
Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures
,”
Phys. Rev. X
8
,
011007
(
2018
).
20.
M.
Dandu
,
G.
Gupta
, and
K.
Majumdar
, “
Negative differential photoconductance as a signature of nonradiative energy transfer in van der Waals heterojunction
,”
ACS Nano
15
,
16432
(
2021
).
21.
F.
Ceballos
,
M. Z.
Bellus
,
H.-Y.
Chiu
, and
H.
Zhao
, “
Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure
,”
ACS Nano
8
,
12717
(
2014
).
22.
X.
Hong
,
J.
Kim
,
S.-F.
Shi
,
Y.
Zhang
,
C.
Jin
,
Y.
Sun
,
S.
Tongay
,
J.
Wu
,
Y.
Zhang
, and
F.
Wang
, “
Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures
,”
Nat. Nanotechnol.
9
,
682
(
2014
).
23.
P.
Rivera
,
J. R.
Schaibley
,
A. M.
Jones
,
J. S.
Ross
,
S.
Wu
,
G.
Aivazian
,
P.
Klement
,
K.
Seyler
,
G.
Clark
,
N. J.
Ghimire
 et al, “
Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures
,”
Nat. Commun.
6
,
6242
(
2015
).
24.
J. S.
Reparaz
,
E.
Chavez-Angel
,
M. R.
Wagner
,
B.
Graczykowski
,
J.
Gomis-Bresco
,
F.
Alzina
, and
C. M.
Sotomayor Torres
, “
A novel contactless technique for thermal field mapping and thermal conductivity determination: Two-laser Raman thermometry
,”
Rev. Sci. Inst.
85
,
034901
(
2014
).
25.
W.
Zhao
,
W.
Chen
,
Y.
Yue
, and
S.
Wu
, “
In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material
,”
Appl. Therm. Eng.
113
,
481
(
2017
).
26.
R.
Zhang
,
L.
Gan
,
D.
Zhang
,
Z.
Wang
, and
C.-Z.
Ning
, “
Disentangling charge transfer, heat conduction, and strain effects at WS2/graphene interface
,” in
CLEO: Applications and Technology
(
Optical Society of America
,
2021
), p.
JW1A-133
.
27.
X.
Liu
,
J.
Pei
,
Z.
Hu
,
W.
Zhao
,
S.
Liu
,
M.-R.
Amara
,
K.
Watanabe
,
T.
Taniguchi
,
H.
Zhang
, and
Q.
Xiong
, “
Manipulating charge and energy transfer between 2D atomic layers via heterostructure engineering
,”
Nano Lett.
20
,
5359
(
2020
).
28.
C.
Ferrante
,
G. D.
Battista
,
L. E. P.
López
,
G.
Batignani
,
E.
Lorchat
,
A.
Virga
,
S.
Berciaud
, and
T.
Scopigno
, “
Picosecond energy transfer in a transition metal dichalcogenide–graphene heterostructure revealed by transient Raman spectroscopy
,” e-print arXiv:2101.05595 (
2021
).
29.
T.
Beechem
,
L.
Yates
, and
S.
Graham
, “
Invited review article: Error and uncertainty in Raman thermal conductivity measurements
,”
Rev. Sci. Inst.
86
,
041101
(
2015
).
30.
J.
Jaramillo-Fernandez
,
E.
Chavez-Angel
, and
C. M.
Sotomayor-Torres
, “
Raman thermometry analysis: Modelling assumptions revisited
,”
Appl. Therm. Eng.
130
,
1175
(
2018
).
31.
S.
Vaziri
,
E.
Yalon
,
M.
Muñoz Rojo
,
S. V.
Suryavanshi
,
H.
Zhang
,
C. J.
McClellan
,
C. S.
Bailey
,
K. K.
Smithe
,
A. J.
Gabourie
,
V.
Chen
 et al, “
Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials
,”
Sci. Adv.
5
,
eaax1325
(
2019
).
32.
K.
Wei
,
Y.
Sui
,
Z.
Xu
,
Y.
Kang
,
J.
You
,
Y.
Tang
,
H.
Li
,
Y.
Ma
,
H.
Ouyang
,
X.
Zheng
 et al, “
Acoustic phonon recycling for photocarrier generation in graphene–WS2 heterostructures
,”
Nat. Commun.
11
,
3876
(
2020
).
33.
D.
White
,
R.
Galleano
,
A.
Actis
,
H.
Brixy
,
M.
De Groot
,
J.
Dubbeldam
,
A.
Reesink
,
F.
Edler
,
H.
Sakurai
,
R.
Shepard
 et al, “
The status of Johnson noise thermometry
,”
Metrologia
33
,
325
(
1996
).
34.
J.
Qu
,
S.
Benz
,
H.
Rogalla
,
W.
Tew
,
D.
White
, and
K.
Zhou
, “
Johnson noise thermometry
,”
Meas. Sci. Technol.
30
,
112001
(
2019
).
35.
J. B.
Johnson
, “
Thermal agitation of electricity in conductors
,”
Nature
119
,
50
(
1927
).
36.
J. B.
Johnson
, “
Thermal agitation of electricity in conductors
,”
Phys. Rev.
32
,
97
(
1928
).
37.
H.
Nyquist
, “
Thermal agitation of electric charge in conductors
,”
Phys. Rev.
32
,
110
(
1928
).
38.
A.
Einstein
,
Investigations on the Theory of the Brownian Movement
(
Courier Corporation
,
1956
).
39.
R.
Kubo
, “
The fluctuation-dissipation theorem
,”
Rep. Prog. Phys.
29
,
255
(
1966
).
40.
K. C.
Fong
,
E. E.
Wollman
,
H.
Ravi
,
W.
Chen
,
A. A.
Clerk
,
M.
Shaw
,
H.
Leduc
, and
K.
Schwab
, “
Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature
,”
Phys. Rev. X
3
,
041008
(
2013
).
41.
K. C.
Fong
and
K.
Schwab
, “
Ultrasensitive and wide-bandwidth thermal measurements of graphene at low temperatures
,”
Phys. Rev. X
2
,
031006
(
2012
).
42.
M. A.
Aamir
,
J. N.
Moore
,
X.
Lu
,
P.
Seifert
,
D.
Englund
,
K. C.
Fong
, and
D. K.
Efetov
, “
Ultrasensitive calorimetric measurements of the electronic heat capacity of graphene
,”
Nano Lett.
21
,
5330
(
2021
).
43.
D. K.
Efetov
,
R.-J.
Shiue
,
Y.
Gao
,
B.
Skinner
,
E. D.
Walsh
,
H.
Choi
,
J.
Zheng
,
C.
Tan
,
G.
Grosso
,
C.
Peng
 et al, “
Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out
,”
Nat. Nanotechnol.
13
,
797
(
2018
).
44.
J.
Crossno
,
X.
Liu
,
T. A.
Ohki
,
P.
Kim
, and
K. C.
Fong
, “
Development of high frequency and wide bandwidth Johnson noise thermometry
,”
Appl. Phys. Lett.
106
,
023121
(
2015
).
45.
K.
Roy
,
Optoelectronic Properties of Graphene-Based Van Der Waals Hybrids
(
Springer Nature
,
2020
).
46.
T.
Ahmed
,
K.
Roy
,
S.
Kakkar
,
A.
Pradhan
, and
A.
Ghosh
, “
Interplay of charge transfer and disorder in optoelectronic response in graphene/hBN/MoS2 van der Waals heterostructures
,”
2D Mater.
7
,
025043
(
2020
).
47.
R.
Debnath
,
S.
Sett
,
R.
Biswas
,
V.
Raghunathan
, and
A.
Ghosh
, “
A simple fabrication strategy for orientationally accurate twisted heterostructures
,”
Nanotechnology
32
,
455705
(
2021
).
48.
K.-G.
Zhou
,
F.
Withers
,
Y.
Cao
,
S.
Hu
,
G.
Yu
, and
C.
Casiraghi
, “
Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures
,”
ACS Nano
8
,
9914
(
2014
).
49.
X.
Li
,
S.
Yu
,
S.
Wu
,
Y.
Wen
,
S.
Zhou
, and
Z.
Zhu
, “
Structural and electronic properties of superlattice composed of graphene and monolayer MoS2
,”
J. Phys. Chem. C
117
,
15347
(
2013
).
50.
N.
Huo
,
Z.
Wei
,
X.
Meng
,
J.
Kang
,
F.
Wu
,
S.-S.
Li
,
S.-H.
Wei
, and
J.
Li
, “
Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2
,”
J. Mater. Chem. C
3
,
5467
(
2015
).
51.
H.
Ago
,
H.
Endo
,
P.
Solis-Fernandez
,
R.
Takizawa
,
Y.
Ohta
,
Y.
Fujita
,
K.
Yamamoto
, and
M.
Tsuji
, “
Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene
,”
ACS Appl. Mater. Interfaces
7
,
5265
(
2015
).
52.
A.
Rossi
,
H.
Büch
,
C.
Di Rienzo
,
V.
Miseikis
,
D.
Convertino
,
A.
Al-Temimy
,
V.
Voliani
,
M.
Gemmi
,
V.
Piazza
, and
C.
Coletti
, “
Scalable synthesis of WS2 on graphene and h-BN: An all-2D platform for light-matter transduction
,”
2D Mater.
3
,
031013
(
2016
).
53.
G.
Ciampalini
,
F.
Fabbri
,
G.
Menichetti
,
L.
Buoni
,
S.
Pace
,
V.
Miseikis
,
A.
Pitanti
,
D.
Pisignano
,
C.
Coletti
,
A.
Tredicucci
 et al, “
Unexpected electron transport suppression in a heterostructured graphene–MoS2 multiple field-effect transistor architecture
,”
ACS Nano
16
,
1291
(
2022
).
54.
B.
Miller
,
E.
Parzinger
,
A.
Vernickel
,
A. W.
Holleitner
, and
U.
Wurstbauer
, “
Photogating of mono- and few-layer MoS2
,”
Appl. Phys. Lett.
106
,
122103
(
2015
).
55.
S.
Sett
,
A.
Parappurath
,
N. K.
Gill
,
N.
Chauhan
, and
A.
Ghosh
, “
Engineering sensitivity and spectral range of photodetection in van der Waals materials and hybrids
,”
Nano Express
3
,
014001
(
2022
).
56.
H.
Fang
and
W.
Hu
, “
Photogating in low dimensional photodetectors
,”
Adv. Sci.
4
,
1700323
(
2017
).
57.
M.
Buscema
,
J. O.
Island
,
D. J.
Groenendijk
,
S. I.
Blanter
,
G. A.
Steele
,
H. S.
van der Zant
, and
A.
Castellanos-Gomez
, “
Photocurrent generation with two-dimensional van der Waals semiconductors
,”
Chem. Soc. Rev.
44
,
3691
(
2015
).
58.
J.
Crossno
,
J. K.
Shi
,
K.
Wang
,
X.
Liu
,
A.
Harzheim
,
A.
Lucas
,
S.
Sachdev
,
P.
Kim
,
T.
Taniguchi
,
K.
Watanabe
 et al, “
Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene
,”
Science
351
,
1058
(
2016
).
59.
R. H.
Dicke
, “
The measurement of thermal radiation at microwave frequencies
,” in
Classics in Radio Astronomy
(
Springer
,
1946
), pp.
106
113
.
60.
A.
Mitioglu
,
P.
Plochocka
,
J.
Jadczak
,
W.
Escoffier
,
G.
Rikken
,
L.
Kulyuk
, and
D. K.
Maude
, “
Optical manipulation of the exciton charge state in single-layer tungsten disulfide
,”
Phys. Rev. B
88
,
245403
(
2013
).
61.
A. M.
Rivera
,
A. P.
Gaur
,
S.
Sahoo
, and
R. S.
Katiyar
, “
Studies on chemical charge doping related optical properties in monolayer WS2
,”
J. Appl. Phys.
120
,
105102
(
2016
).
62.
L.
Yuan
,
T.-F.
Chung
,
A.
Kuc
,
Y.
Wan
,
Y.
Xu
,
Y. P.
Chen
,
T.
Heine
, and
L.
Huang
, “
Photocarrier generation from interlayer charge-transfer transitions in WS2–graphene heterostructures
,”
Sci. Adv.
4
,
e1700324
(
2018
).
63.
A.
Volokitin
and
B. N.
Persson
, “
Near-field radiative heat transfer and noncontact friction
,”
Rev. Mod. Phys.
79
,
1291
(
2007
).
64.
J.
DeSutter
,
L.
Tang
, and
M.
Francoeur
, “
A near-field radiative heat transfer device
,”
Nat. Nanotechnol.
14
,
751
(
2019
).
65.
S.
Yuan
,
R.
Yu
,
C.
Ma
,
B.
Deng
,
Q.
Guo
,
X.
Chen
,
C.
Li
,
C.
Chen
,
K.
Watanabe
,
T.
Taniguchi
 et al, “
Room temperature graphene mid-infrared bolometer with a broad operational wavelength range
,”
ACS Photonics
7
,
1206
(
2020
).
66.
H.
Sahoo
, “
Förster resonance energy transfer—A spectroscopic nanoruler: Principle and applications
,”
J. Photochem. Photobiol. C: Photochem. Rev.
12
,
20
(
2011
).
67.
B.
Liu
,
F.
Meng
,
C. D.
Reddy
,
J. A.
Baimova
,
N.
Srikanth
,
S. V.
Dmitriev
, and
K.
Zhou
, “
Thermal transport in a graphene–MoS2 bilayer heterostructure: A molecular dynamics study
,”
RSC Adv.
5
,
29193
(
2015
).
68.
Y.
Hong
,
M. G.
Ju
,
J.
Zhang
, and
X. C.
Zeng
, “
Phonon thermal transport in a graphene/MoSe2 van der Waals heterobilayer
,”
Phys. Chem. Chem. Phys.
20
,
2637
(
2018
).
69.
H.
Zhou
,
G.
Zhang
,
J.-S.
Wang
, and
Y.-W.
Zhang
, “
Anharmonic quantum thermal transport across a van der Waals interface
,” e-print arXiv:2202.11026 (
2022
).
70.
S.
Wu
,
J.
Wang
,
H.
Xie
, and
Z.
Guo
, “
Interfacial thermal conductance across graphene/MoS2 van der Waals heterostructures
,”
Energies
13
,
5851
(
2020
).
71.
S.
Ghatak
,
A. N.
Pal
, and
A.
Ghosh
, “
Nature of electronic states in atomically thin MoS2 field-effect transistors
,”
ACS Nano
5
,
7707
(
2011
).
72.
M. L.
Lin
,
Y.
Zhou
,
J. B.
Wu
,
X.
Cong
,
X. L.
Liu
,
J.
Zhang
,
H.
Li
,
W.
Yao
, and
P.-H.
Tan
, “
Cross-dimensional electron–phonon coupling in van der Waals heterostructures
,”
Nat. Commun.
10
,
2419
(
2019
).
73.
B. S.
Karasik
,
C. B.
McKitterick
, and
D. E.
Prober
, “
Prospective performance of graphene HEB for ultrasensitive detection of sub-mm radiation
,”
J. Low Temp. Phys.
176
,
249
(
2014
).

Supplementary Material

You do not currently have access to this content.