Image sensors used in consumer cameras only detect intensity of light. Spectral, angular, and phase information of incident light is largely lost. For conventional applications like photography, the intensity information with three color bands (RGB) is sufficient. However, for advanced sensing applications, such as autonomous vehicles, biomedical imaging, and robotics, extracting more information from the incident light could help machines to make better decisions. It is expected that, in the future, more cameras will be built for machines than for people, which will be further accelerated by the rapid progress in machine learning and artificial intelligence. We envision that these applications will substantially benefit from multimodal measurement of light fields by advanced imaging sensors. In this Perspective, we discuss recent progress in image sensors with multimodal capabilities.

1.
T. G.
Phillips
and
J.
Keene
, “
Submillimeter astronomy (heterodyne spectroscopy)
,”
Proc. IEEE
80
,
1662
1678
(
1992
).
2.
C. P.
Bacon
,
Y.
Mattley
, and
R.
DeFrece
, “
Miniature spectroscopic instrumentation: Applications to biology and chemistry
,”
Rev. Sci. Instrum.
75
,
1
16
(
2004
).
3.
L. P.
Schuler
,
J. S.
Milne
,
J. M.
Dell
, and
L.
Faraone
, “
MEMS-based microspectrometer technologies for NIR and MIR wavelengths
,”
J. Phys. D
42
,
133001
(
2009
).
4.
J.
Malinen
,
A.
Rissanen
,
H.
Saari
,
P.
Karioja
,
M.
Karppinen
,
T.
Aalto
, and
K.
Tukkiniemi
, “
Advances in miniature spectrometer and sensor development
,” in
Next-Generation Spectroscopic Technologies VII
(
SPIE
,
2014
), p.
91010C
.
5.
R. A.
Crocombe
, “
Portable spectroscopy
,”
Appl. Spectrosc.
72
,
1701
1751
(
2018
).
6.
M.
Manley
, “
Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials
,”
Chem. Soc. Rev.
43
,
8200
8214
(
2014
).
7.
E.
Ryckeboer
,
R.
Bockstaele
,
M.
Vanslembrouck
, and
R.
Baets
, “
Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip
,”
Biomed. Opt. Express
5
,
1636
1648
(
2014
).
8.
N. K.
Pervez
,
W.
Cheng
,
Z.
Jia
,
M. P.
Cox
,
H. M.
Edrees
, and
I.
Kymissis
, “
Photonic crystal spectrometer
,”
Opt. Express
18
,
8277
285
(
2010
).
9.
J. H.
Correia
,
G.
De Graaf
,
S. H.
Kong
,
M.
Bartek
, and
R. F.
Wolffenbuttel
, “
Single-chip CMOS optical microspectrometer
,”
Sens. Actuators, A
82
,
191
197
(
2000
).
10.
S. H.
Kong
,
J. H.
Correia
,
G.
De Graaf
,
M.
Bartek
, and
R. F.
Wolffenbuttel
, “
Integrated silicon microspectrometers
,”
IEEE Instrum. Meas. Mag.
4
,
34
38
(
2001
).
11.
S. W.
Wang
,
C.
Xia
,
X.
Chen
,
W.
Lu
,
M.
Li
,
H.
Wang
,
W.
Zheng
, and
T.
Zhang
, “
Concept of a high-resolution miniature spectrometer using an integrated filter array
,”
Opt. Lett.
32
,
632
634
(
2007
).
12.
A.
Tittl
,
A.
Leitis
,
M.
Liu
,
F.
Yesilkoy
,
D. Y.
Choi
,
D. N.
Neshev
,
Y. S.
Kivshar
, and
H.
Altug
, “
Imaging-based molecular barcoding with pixelated dielectric metasurfaces
,”
Science
360
,
1105
1109
(
2018
).
13.
A. M.
Mika
, “
Linear-wedge spectrometer
,” in
Imaging Spectroscopy of the Terrestrial Environment
(
SPIE
,
1990
), Vol.
1298
, p.
127
.
14.
M.
Grundmann
, “
Modeling of a waveguide‐based UV–VIS–IR spectrometer based on a lateral (In, Ga) N alloy gradient
,”
Phys. Status Solidi A
216
,
1900170
(
2019
).
15.
S. R.
Mallinson
and
J. H.
Jerman
, “
Miniature micromachined Fabry-Perot interferometers in silicon
,”
Electron. Lett.
23
,
1041
1043
(
1987
).
16.
N.
Gat
, “
Imaging spectroscopy using tunable filters: A review
,” in
Wavelet Applications VII
(
SPIE
,
2000
), Vol.
4056
.
17.
H.
Zhang
,
X. L.
Wang
,
J. I.
Soos
, and
J. A.
Crisp
, “
Design of a miniature solid state NIR spectrometer
,” in
Infrared Detectors and Instrumentation for Astronomy
(
SPIE
,
1995
).
18.
T. A.
Kwa
and
R. F.
Wolffenbuttel
, “
Integrated grating/detector array fabricated in silicon using micromachining techniques
,”
Sens. Actuators, A
31
,
259
266
(
1992
).
19.
See www.hamamatsu.com/jp/en/product/type/C12666MA/index.html for “
Hamamatsu mini-spectrometer.
20.
A. Y.
Zhu
,
W. T.
Chen
,
M.
Khorasaninejad
,
J.
Oh
,
A.
Zaidi
,
I.
Mishra
,
R. C.
Devlin
, and
F.
Capasso
, “
Ultra-compact visible chiral spectrometer with meta-lenses
,”
APL Photonics
2
,
036103
(
2017
).
21.
C.
Yang
,
K.
Shi
,
P.
Edwards
, and
Z.
Liu
, “
Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device
,”
Opt. Express
18
,
23529
23534
(
2010
).
22.
B.
Gao
,
Z.
Shi
, and
R. W.
Boyd
, “
Design of flat-band superprism structures for on-chip spectroscopy
,”
Opt. Express
23
,
6491
6496
(
2015
).
23.
D.
Sander
,
M.-O.
Duecker
,
O.
Blume
, and
J.
Mueller
, “
An optical microspectrometer in SiON-slab-waveguides
,”
Proc. SPIE
2686
,
100
107
(
1996
).
24.
G.
Calafiore
,
A.
Koshelev
,
S.
Dhuey
,
A.
Goltsov
,
P.
Sasorov
,
S.
Babin
,
V.
Yankov
,
S.
Cabrini
, and
C.
Peroz
, “
Holographic planar lightwave circuit for on-chip spectroscopy
,”
Light: Sci. Appl.
3
,
e203
(
2014
).
25.
S.
Nezhadbadeh
,
A.
Neumann
,
P.
Zarkesh-Ha
, and
S. R. J.
Brueck
, “
Chirped-grating spectrometer-on-a-chip
,”
Opt. Express
28
,
24501
24510
(
2020
).
26.
P.
Cheben
,
J. H.
Schmid
,
A.
Delâge
,
A.
Densmore
,
S.
Janz
,
B.
Lamontagne
,
J.
Lapointe
,
E.
Post
,
P.
Waldron
, and
D. X.
Xu
, “
A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides
,”
Opt. Express
15
,
2299
2306
(
2007
).
27.
M.
Faraji-Dana
,
E.
Arbabi
,
A.
Arbabi
,
S. M.
Kamali
,
H.
Kwon
, and
A.
Faraon
, “
Compact folded metasurface spectrometer
,”
Nat. Commun.
9
,
4196
(
2018
).
28.
P. R.
Griffiths
and
J. A.
De Haseth
,
Fourier Transform Infrared Spectrometry
(
John Wiley & Sons
,
2007
).
29.
O.
Manzardo
,
H. P.
Herzig
,
C. R.
Marxer
, and
N. F.
de Rooij
, “
Miniaturized time-scanning Fourier transform spectrometer based on silicon technology
,”
Opt. Lett.
24
,
1705
1707
(
1999
).
30.
U.
Wallrabe
,
C.
Solf
,
J.
Mohr
, and
J. G.
Korvink
, “
Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator
,”
Sens. Actuators, A
123–124
,
459
467
(
2005
).
31.
W.
Wang
,
S. R.
Samuelson
,
J.
Chen
, and
H.
Xie
, “
Miniaturizing Fourier transform spectrometer with an electrothermal micromirror
,”
IEEE Photonics Technol. Lett.
27
,
1418
1421
(
2015
).
32.
A. V.
Velasco
,
P.
Cheben
,
P. J.
Bock
,
A.
Delâge
,
J. H.
Schmid
,
J.
Lapointe
,
S.
Janz
,
M. L.
Calvo
,
D.
Xu
,
M.
Florjańczyk
, and
M.
Vachon
, “
High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides
,”
Opt. Lett.
38
,
706
708
(
2013
).
33.
J.
Li
,
D. F.
Lu
, and
Z. M.
Qi
, “
Miniature Fourier transform spectrometer based on wavelength dependence of half-wave voltage of a LiNbO3 waveguide interferometer
,”
Opt. Lett.
39
,
3923
3926
(
2014
).
34.
M. C.
Souza
,
A.
Grieco
,
N. C.
Frateschi
, and
Y.
Fainman
, “
Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction
,”
Nat. Commun.
9
,
665
(
2018
).
35.
S. N.
Zheng
,
J.
Zou
,
H.
Cai
,
J. F.
Song
,
L. K.
Chin
,
P. Y.
Liu
,
Z. P.
Lin
,
D. L.
Kwong
, and
A. Q.
Liu
, “
Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution
,”
Nat. Commun.
10
,
2349
(
2019
).
36.
Z.
Yang
,
T.
Albrow-Owen
,
W.
Cai
, and
T.
Hasan
, “
Miniaturization of optical spectrometers
,”
Science
371
,
6528
(
2021
).
37.
W.
Zhang
,
H.
Song
,
X.
He
,
L.
Huang
,
X.
Zhang
,
J.
Zheng
,
W.
Shen
,
X.
Hao
, and
X.
Liu
, “
Deeply learned broadband encoding stochastic hyperspectral imaging
,”
Light: Sci. Appl.
10
,
108
(
2021
).
38.
Z.
Wang
,
S.
Yi
,
A.
Chen
,
M.
Zhou
,
T. S.
Luk
,
A.
James
,
J.
Nogan
,
W.
Ross
,
G.
Joe
,
A.
Shahsafi
,
K.
Wang
,
M. A.
Kats
, and
Z.
Yu
, “
Single-shot on-chip spectral sensors based on photonic crystal slabs
,”
Nat. Commun.
10
,
1020
(
2019
).
39.
Z.
Wang
and
Z.
Yu
, “
Spectral analysis based on compressive sensing in nanophotonic structures
,”
Opt. Express
22
,
25608
25614
(
2014
).
40.
J.
Meng
,
J. J.
Cadusch
, and
K. B.
Crozier
, “
Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm
,”
Nano Lett.
20
,
320
328
(
2020
).
41.
B.
Zheng
,
L.
Li
,
J.
Wang
,
M.
Zhuge
,
X.
Su
,
Y.
Xu
,
Q.
Yang
,
Y.
Shi
, and
X.
Wang
, “
On‐chip measurement of photoluminescence with high sensitivity monolithic spectrometer
,”
Adv. Opt. Mater.
8
,
2000191
(
2020
).
42.
J.
Dong
, “
The smallest nanowire spectrometers
,”
Front. Optoelectron.
12
,
341
341
(
2019
).
43.
M. N.
Zhang
,
X.
Wu
,
A.
Riaud
,
X. L.
Wang
,
F.
Xie
,
W. J.
Liu
,
Y.
Mei
,
D. W.
Zhang
, and
S. J.
Ding
, “
Spectrum projection with a bandgap-gradient perovskite cell for colour perception
,”
Light: Sci. Appl.
9
,
162
(
2020
).
44.
H.
Sun
,
W.
Tian
,
X.
Wang
,
K.
Deng
,
J.
Xiong
, and
L.
Li
, “
In situ formed gradient bandgap‐tunable perovskite for ultrahigh‐speed color/spectrum‐sensitive photodetectors via electron‐donor control
,”
Adv. Mater.
32
,
1908108
(
2020
).
45.
Y.
August
and
A.
Stern
, “
Compressive sensing spectrometry based on liquid crystal devices
,”
Opt. Lett.
38
,
4996
4999
(
2013
).
46.
E.
Huang
,
Q.
Ma
, and
Z.
Liu
, “
Etalon array reconstructive spectrometry
,”
Sci. Rep.
7
,
40693
(
2017
).
47.
Y.
Gao
,
H.
Cansizoglu
,
K. G.
Polat
,
S.
Ghandiparsi
,
A.
Kaya
,
H. H.
Mamtaz
,
A. S.
Mayet
,
Y.
Wang
,
X.
Zhang
,
T.
Yamada
,
E. P.
Devine
,
A. F.
Elrefaie
,
S.
Wang
, and
M. S.
Islam
, “
Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes
,”
Nat. Photonics
11
,
301
308
(
2017
).
48.
B.
Craig
,
V. R.
Shrestha
,
J.
Meng
,
J. J.
Cadusch
, and
K. B.
Crozier
, “
Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces
,”
Opt. Lett.
43
,
4481
4484
(
2018
).
49.
J.
Bao
and
M. G.
Bawendi
, “
A colloidal quantum dot spectrometer
,”
Nature
523
,
67
70
(
2015
).
50.
X.
Zhu
,
L.
Bian
,
H.
Fu
,
L.
Wang
,
B.
Zou
,
Q.
Dai
,
J.
Zhang
, and
H.
Zhong
, “
Broadband perovskite quantum dot spectrometer beyond human visual resolution
,”
Light: Sci. Appl.
9
,
73
(
2020
).
51.
B.
Redding
,
S. F.
Liew
,
Y.
Bromberg
,
R.
Sarma
, and
H.
Cao
, “
Evanescently coupled multimode spiral spectrometer
,”
Optica
3
(
9
),
956
962
(
2016
).
52.
T.
Yang
,
C.
Xu
,
H. P.
Ho
,
Y. Y.
Zhu
,
X. H.
Hong
,
Q. J.
Wang
,
Y. C.
Chen
,
X. A.
Li
,
X. H.
Zhou
,
M. D.
Yi
, and
W.
Huang
, “
Miniature spectrometer based on diffraction in a dispersive hole array
,”
Opt. Lett.
40
(
13
),
3217
3220
(
2015
).
53.
W.
Hartmann
,
P.
Varytis
,
H.
Gehring
,
N.
Walter
,
F.
Beutel
,
K.
Busch
, and
W.
Pernice
, “
Waveguide‐integrated broadband spectrometer based on tailored disorder
,”
Adv. Opt. Mater.
8
(
6
),
1901602
(
2020
).
54.
T.
Ermatov
,
R. E.
Noskov
,
A. A.
Machnev
,
I.
Gnusov
,
V.
Atkin
,
E. N.
Lazareva
,
S. V.
German
,
S. S.
Kosolobov
,
T. S.
Zatsepin
,
O. V.
Sergeeva
,
J. S.
Skibina
,
P.
Ginzburg
,
V. V.
Tuchin
,
P. G.
Lagoudakis
, and
D. A.
Gorin
, “
Multispectral sensing of biological liquids with hollow-core microstructured optical fibres
,”
Light: Sci. Appl.
9
(
1
),
173
(
2020
).
55.
S.
Perevoschikov
,
N.
Kaydanov
,
T.
Ermatov
,
O.
Bibikova
,
I.
Usenov
,
T.
Sakharova
,
A.
Bocharnikov
,
J.
Skibina
,
V.
Artyushenko
, and
D.
Gorin
, “
Light guidance up to 6.5 μm in borosilicate soft glass hollow-core microstructured optical waveguides
,”
Opt. Express
28
(
19
),
27940
27950
(
2020
).
56.
O.
Avayu
,
E.
Almeida
,
Y.
Prior
, and
T.
Ellenbogen
, “
Composite functional metasurfaces for multispectral achromatic optics
,”
Nat. Commun.
8
(
1
),
14992
(
2017
).
57.
S.
Karepov
and
T.
Ellenbogen
, “
Metasurface-based contact lenses for color vision deficiency
,”
Opt. Lett.
45
(
6
),
1379
1382
(
2020
).
58.
A.
Wang
,
P.
Gill
, and
A.
Molnar
, “
Light field image sensors based on the Talbot effect
,”
Appl. Opt.
48
,
5897
5905
(
2009
).
59.
S.
Sivaramakrishnan
,
A.
Wang
,
P. R.
Gill
, and
A.
Molnar
, “
Enhanced angle sensitive pixels for light field imaging
,” in
International Electron Devices Meeting
(
IEEE
,
2011
).
60.
S.
Yi
,
M.
Zhou
,
Z.
Yu
,
P.
Fan
,
N.
Behdad
,
D.
Lin
,
K. X.
Wang
,
S.
Fan
, and
M.
Brongersma
, “
Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals
,”
Nat. Nanotechnol.
13
,
1143
1147
(
2018
).
61.
E. H.
Adelson
and
J. Y.
Wang
, “
Single lens stereo with a plenoptic camera
,”
IEEE PAMI
14
,
99
106
(
1992
).
62.
R.
Ng
,
M.
Levoy
,
M.
Brédif
,
G.
Duval
,
M.
Horowitz
, and
P.
Hanrahan
, “
Light field photography with a hand-held plenoptic camera
,” Doctoral dissertation (
Stanford University
,
2005
).
63.
A.
Wang
,
P. R.
Gill
, and
A.
Molnar
, “
An angle-sensitive CMOS imager for single-sensor 3D photography
,” in
IEEE International Solid-State Circuits Conference
(
IEEE
,
2011
), pp.
412
414
.
64.
P. L.
Wizinowich
,
D. L.
Mignant
,
A. H.
Bouchez
,
R. D.
Campbell
,
J. C.
Chin
,
A. R.
Contos
,
A.
Marcos
,
K. H.
Scott
,
M. J.
Erik
, and
D. M.
Pennington
, “
The W. M. Keck observatory laser guide star adaptive optics system: Overview
,”
Publ. Astron. Soc. Pac.
118
,
297
309
(
2006
).
65.
R.
Davies
and
M.
Kasper
, “
Adaptive optics for astronomy
,”
Annu. Rev. Astron. Astrophys.
50
,
305
351
(
2012
).
66.
J.
Liang
,
D. R.
Williams
, and
D. T.
Miller
, “
Supernormal vision and high-resolution retinal imaging through adaptive optics
,”
J. Opt. Soc. Am. A
14
,
2884
2892
(
1997
).
67.
K.
Wang
,
W.
Sun
,
C. T.
Richie
,
B. K.
Harvey
,
E.
Betzig
, and
N.
Ji
, “
Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue
,”
Nat. Commun.
6
,
7276
(
2015
).
68.
S.
Yi
,
J.
Xiang
,
M.
Zhou
,
Z.
Wu
,
L.
Yang
, and
Z.
Yu
, “
Angle-based wavefront sensing enabled by the near fields of flat optics
,”
Nat. Commun.
12
,
1
8
(
2021
).
69.
D. L.
Fried
, “
Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements
,”
J. Opt. Soc. Am.
67
,
370
375
(
1977
).
70.
R.
Cubalchini
, “
Modal wave-front estimation from phase derivative measurements
,”
J. Opt. Soc. Am.
69
,
972
977
(
1979
).
71.
W. H.
Southwell
, “
Wave-front estimation from wave-front slope measurements
,”
J. Opt. Soc. Am.
70
,
998
1006
(
1980
).
72.
P.
Bon
,
G.
Maucort
,
B.
Wattellier
, and
S.
Monneret
, “
Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells
,”
Opt. Express
17
,
13080
13094
(
2009
).
73.
Y.
Park
,
C.
Depeursinge
, and
G.
Popescu
, “
Quantitative phase imaging in biomedicine
,”
Nat. Photonics
12
,
578
589
(
2018
).
74.
J. S.
Tyo
,
D. L.
Goldstein
,
D. B.
Chenault
, and
J. A.
Shaw
, “
Review of passive imaging polarimetry for remote sensing applications
,”
Appl. Opt.
45
(
22
),
5453
5469
(
2006
).
75.
D. L.
Coffeen
, “
Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter
,”
J. Opt. Soc. Am.
69
,
1051
1064
(
1979
).
76.
W. G.
Egan
,
W. R.
Johnson
, and
V. S.
Whitehead
, “
Terrestrial polarization imagery obtained from the Space Shuttle: Characterization and interpretation
,”
Appl. Opt.
30
,
435
442
(
1991
).
77.
M.
Garcia
,
C.
Edmiston
,
R.
Marinov
,
A.
Vail
, and
V.
Gruev
, “
Bio-inspired color-polarization imager for real-time in situ imaging
,”
Optica
4
(
10
),
1263
1271
(
2017
).
78.
N. W.
Roberts
,
M. J.
How
,
M. L.
Porter
,
S. E.
Temple
,
R. L.
Caldwell
,
S. B.
Powell
,
V.
Gruev
,
N. J.
Marshall
, and
T. W.
Cronin
, “
Animal polarization imaging and implications for optical processing
,”
Proc. IEEE
102
(
10
),
1427
1434
(
2014
).
79.
T.
Charanya
,
T.
York
,
S.
Bloch
,
G.
Sudlow
,
K.
Liang
,
M.
Garcia
,
W. J.
Akers
,
D.
Rubin
,
V.
Gruev
, and
S.
Achilefu
, “
Trimodal colorfluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer
,”
J. Biomed. Opt.
19
,
126002
(
2014
).
80.
R.
Walraven
, “
Polarization imagery
,”
Opt. Eng.
20
,
200114
(
1981
).
81.
R. M. A.
Azzam
, “
Arrangement of four photodetectors for measuring the state of polarization of light
,”
Opt. Lett.
10
,
309
311
(
1985
).
82.
J. D.
Barter
,
P. H. Y.
Lee
, and
H. R.
Thompson
, “
Stokes parameter imaging of scattering surfaces
,” in
Polarization: Measurement, Analysis, and Remote Sensing
(
SPIE
,
1997
), Vol.
3121
, pp.
314
320
.
83.
J. L.
Pezzaniti
and
D. B.
Chenault
, “
A division of aperture MWIR imaging polarimeter
,” in
Polarization Science and Remote Sensing II
, edited by
J. A.
Shaw
and
J. S.
Tyo
(
SPIE
,
2005
).
84.
R. A.
Chipman
, “
Polarization analysis of optical systems
,”
Opt. Eng.
28
,
280290
(
1989
).
85.
R.
Perkins
and
V.
Gruev
, “
Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters
,”
Opt. Express
18
,
25815
25824
(
2010
).
86.
A.
Arbabi
,
E.
Arbabi
,
S. M.
Kamali
,
Y.
Horie
,
S.
Han
, and
A.
Faraon
, “
Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations
,”
Nat. Commun.
7
,
13682
(
2016
).
87.
B.
Groever
,
W. T.
Chen
, and
F.
Capasso
, “
Meta-lens doublet in the visible region
,”
Nano Lett.
17
,
4902
4907
(
2017
).
88.
N. A.
Rubin
,
P.
Chevalier
,
M.
Juhl
,
M.
Tamagnone
,
R.
Chipman
, and
F.
Capasso
, “
Imaging polarimetry through metasurface polarization gratings
,”
Opt. Express
30
(
6
),
9389
9412
(
2022
).
89.
N. A.
Rubin
,
G.
D'Aversa
,
P.
Chevalier
,
Z.
Shi
,
W. T.
Chen
, and
F.
Capasso
, “
Matrix Fourier optics enables a compact full-Stokes polarization camera
,”
Science
365
(
6448
),
eaax1839
(
2019
).
90.
E.
Arbabi
,
S. M.
Kamali
,
A.
Arbabi
, and
A.
Faraon
, “
Full-Stokes imaging polarimetry using dielectric metasurfaces
,”
ACS Photonics
5
(
8
),
3132
3140
(
2018
).
91.
C.
Brown
,
A.
Goncharov
,
Z. S.
Ballard
,
M.
Fordham
,
A.
Clemens
,
Y.
Qiu
,
Y.
Rivenson
, and
A.
Ozcan
, “
Neural network based on-chip spectroscopy using a scalable plasmonic encoder
,”
ACS Nano
15
,
6305
6315
(
2021
).
92.
J.
Zhang
,
X.
Zhu
, and
J.
Bao
, “
Solver-informed neural networks for spectrum reconstruction of colloidal quantum dot spectrometers
,”
Opt. Express
28
,
33656
33672
(
2020
).
93.
J.
Zhang
,
X.
Zhu
, and
J.
Bao
, “
Denoising autoencoder aided spectrum reconstruction for colloidal quantum dot spectrometers
,”
IEEE Sens. J.
21
,
6450
6458
(
2021
).
94.
C.
Kim
,
D.
Park
, and
H.-N.
Lee
, “
Convolutional neural networks for the reconstruction of spectra in compressive sensing spectrometers
,” in
Conference on Optical Data Science II
,
San Francisco, CA
(
SPIE
2019
), p.
109370L
.
95.
S.
Li
,
X.
Zhu
, and
J.
Bao
, “
Hierarchical multi-scale convolutional neural networks for hyperspectral image classification
,”
Sensors
19
,
1714
(
2019
).
96.
C.
Kim
,
D.
Park
, and
H.-N.
Lee
, “
Compressive sensing spectroscopy using a residual convolutional neural network
,”
Sensors
20
,
594
(
2020
).
97.
L.
Gao
,
Y.
Qu
,
L.
Wang
, and
Z.
Yu
, “
Computational spectrometers enabled by nanophotonics and deep learning
,”
Nanophotonics
11
,
2507
(
2022
).
98.
Y.
Rivenson
,
Y.
Zhang
,
H.
Günaydın
,
D.
Teng
, and
A.
Ozcan
, “
Phase recovery and holographic image reconstruction using deep learning in neural networks
,”
Light: Sci. Appl.
7
(
2
),
17141
(
2018
).
99.
Y.
Rivenson
,
Z.
Göröcs
,
H.
Günaydin
,
Y.
Zhang
,
H.
Wang
, and
A.
Ozcan
, “
Deep learning microscopy
,”
Optica
4
(
11
),
1437
1443
(
2017
).
You do not currently have access to this content.