Voltage-induced strain is regarded as an energy-efficient choice of tuning spin-dynamics. However, studies on the strain-mediated switching of magnetization in a perpendicular-magnetic-anisotropy layer are few because of the uncertainties that arise from the magnetization oscillation at high strain. In this work, we demonstrate theoretically how to deterministically switch the perpendicular magnetization in an ultrathin magnetic nanodisk by combining biaxial in-plane strain with the Dzyaloshinskii–Moriya interaction (DMI). The magnetization-switching process is carefully investigated under different strains and DMI strengths. The underlying switching mechanism is attributed to the remnant magnetization component, which deviates away from the film plane during the strain-pulse-impulsion period and which is also highly dependent on the DMI. Based on simulation results, a theoretical route for obtaining deterministic switching regarding strain and DMI is established. In this route, the minimum duration of the strain pulse can be shortened to a critical time of 2.5 ns as the strain increases to 7000 ppm at a DMI value of 0.6 mJ/m2. Moreover, nonvolatile and reversible switching between the spin-up and spin-down states of perpendicular magnetization is realized using pulses of biaxial in-plane isotropic strain. This switching occurs via an intermediate skyrmion and shows potential in overcoming the edge-roughness-related pinning that occurs in spin–orbit-torque current-induced switching. This study provides a robust insight into strain-induced current-free magnetization switching, providing a guide for experimental research into the strain-mediated voltage control of memory applications.
Skip Nav Destination
Article navigation
18 July 2022
Research Article|
July 19 2022
Theoretical routes for current-free magnetization switching induced by joint effects of strain and Dzyaloshinskii–Moriya interaction
Mingmin Zhu
;
Mingmin Zhu
(Conceptualization, Funding acquisition, Project administration, Resources, Writing – original draft, Writing – review & editing)
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University
, Hangzhou 310018, China
Search for other works by this author on:
Yiting Li;
Yiting Li
(Data curation, Formal analysis, Methodology, Software, Writing – original draft)
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University
, Hangzhou 310018, China
Search for other works by this author on:
Huimin Hu;
Huimin Hu
(Data curation, Investigation)
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University
, Hangzhou 310018, China
Search for other works by this author on:
Shuting Cui;
Shuting Cui
(Formal analysis, Investigation)
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University
, Hangzhou 310018, China
Search for other works by this author on:
Yang Qiu;
Yang Qiu
(Validation, Visualization)
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University
, Hangzhou 310018, China
Search for other works by this author on:
Guoliang Yu
;
Guoliang Yu
a)
(Conceptualization, Supervision, Writing – review & editing)
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University
, Hangzhou 310018, China
Search for other works by this author on:
Hao-Miao Zhou
Hao-Miao Zhou
a)
(Funding acquisition, Supervision, Writing – review & editing)
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University
, Hangzhou 310018, China
Search for other works by this author on:
Appl. Phys. Lett. 121, 032402 (2022)
Article history
Received:
April 29 2022
Accepted:
July 04 2022
Citation
Mingmin Zhu, Yiting Li, Huimin Hu, Shuting Cui, Yang Qiu, Guoliang Yu, Hao-Miao Zhou; Theoretical routes for current-free magnetization switching induced by joint effects of strain and Dzyaloshinskii–Moriya interaction. Appl. Phys. Lett. 18 July 2022; 121 (3): 032402. https://doi.org/10.1063/5.0097526
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00