Alloy scattering in random AlGaN alloys drastically reduces the electron mobility and, therefore, the power-electronics figure of merit. As a result, Al compositions greater than 75% are required to obtain even a twofold increase in the Baliga figure of merit compared to GaN. However, beyond approximately 80% Al composition, donors in AlGaN undergo the DX transition, which makes impurity doping increasingly more difficult. Moreover, the contact resistance increases exponentially with the increase in Al content, and integration with dielectrics becomes difficult due to the upward shift of the conduction band. Atomically thin superlattices of AlN and GaN, also known as digital alloys, are known to grow experimentally under appropriate growth conditions. These chemically ordered nanostructures could offer significantly enhanced figure of merit compared to their random alloy counterparts due to the absence of alloy scattering, as well as better integration with contact metals and dielectrics. In this work, we investigate the electronic structure and phonon-limited electron mobility of atomically thin AlN/GaN digital-alloy superlattices using first-principles calculations based on density-functional and many-body perturbation theory. The bandgap of the atomically thin superlattices reaches 4.8 eV, and the in-plane (out-of-plane) mobility is 369 (452) cm2 V−1 s−1. Using the modified Baliga figure of merit that accounts for the dopant ionization energy, we demonstrate that atomically thin AlN/GaN superlattices with a monolayer sublattice periodicity have the highest modified Baliga figure of merit among several technologically relevant ultra-wide bandgap materials, including random AlGaN, β-Ga2O3, cBN, and diamond.

1.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
Van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa-Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
, “
Ultrawide-bandgap semiconductors: Research opportunities and challenges
,”
Adv. Electron. Mater.
4
,
1600501
(
2018
).
2.
M. H.
Wong
,
O.
Bierwagen
,
R. J.
Kaplar
, and
H.
Umezawa
, “
Ultrawide-bandgap semiconductors: An overview
,”
J. Mater. Res.
36
,
4601
4615
(
2021
).
3.
E.
Kioupakis
,
S.
Chae
,
K.
Bushick
,
N.
Pant
,
X.
Zhang
, and
W.
Lee
, “
Theoretical characterization and computational discovery of ultra-wide-band-gap semiconductors with predictive atomistic calculations
,”
J. Mater. Res.
36
,
4616
4637
(
2021
).
4.
B. J.
Baliga
, “
Power semiconductor device figure of merit for high-frequency applications
,”
IEEE Electron Device Lett.
10
,
455
457
(
1989
).
5.
Y.
Zhang
and
J. S.
Speck
, “
Importance of shallow hydrogenic dopants and material purity of ultra-wide bandgap semiconductors for vertical power electron devices
,”
Semicond. Sci. Technol.
35
,
125018
(
2020
).
6.
M. E.
Coltrin
,
A. G.
Baca
, and
R. J.
Kaplar
, “
Analysis of 2D transport and performance characteristics for lateral power devices based on AlGaN alloys
,”
ECS J. Solid State Sci. Technol.
6
,
S3114
8
(
2017
).
7.
M. S.
Shur
, “
GaN based transistors for high power applications
,”
Solid State Electron.
42
,
2131
2138
(
1998
).
8.
U. K.
Mishra
,
L.
Shen
,
T. E.
Kazior
, and
Y. F.
Wu
, “
GaN-based RF power devices and amplifiers
,”
Proc. IEEE
96
,
287
305
(
2008
).
9.
P. G.
Moses
,
M.
Miao
,
Q.
Yan
, and
C. G.
Van De Walle
, “
Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN
,”
J. Chem. Phys.
134
,
84703
(
2011
).
10.
S.
Poncé
,
D.
Jena
, and
F.
Giustino
, “
Hole mobility of strained GaN from first principles
,”
Phys. Rev. B
100
,
085204
(
2019
).
11.
V. A.
Jhalani
,
J. J.
Zhou
,
J.
Park
,
C. E.
Dreyer
, and
M.
Bernardi
, “
Piezoelectric electron-phonon interaction from ab initio dynamical quadrupoles: Impact on charge transport in wurtzite GaN
,”
Phys. Rev. Lett.
125
,
136602
(
2020
).
12.
J. L.
Lyons
,
D.
Wickramaratne
, and
C. G.
Van De Walle
, “
A first-principles understanding of point defects and impurities in GaN
,”
J. Appl. Phys.
129
,
111101
(
2021
).
13.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
, “
First-principles study of the impact of the atomic configuration on the electronic properties of AlxGa1−xN alloys
,”
Phys. Rev. B
99
,
035201
(
2019
).
14.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
, “
Band offsets of AlxGa1−xN alloys using first-principles calculations
,”
J. Phys.: Condens. Matter
32
,
365504
(
2020
).
15.
J.
Simon
,
A.
Wang
,
H.
Xing
,
S.
Rajan
, and
D.
Jena
, “
Carrier transport and confinement in polarization-induced three-dimensional electron slabs: Importance of alloy scattering in AlGaN
,”
Appl. Phys. Lett.
88
,
042109
(
2006
).
16.
N.
Pant
,
Z.
Deng
, and
E.
Kioupakis
, “
High electron mobility of AlxGa1−xN evaluated by unfolding the DFT band structure
,”
Appl. Phys. Lett.
117
,
242105
(
2020
).
17.
L.
Gordon
,
J. L.
Lyons
,
A.
Janotti
, and
C. G.
Van De Walle
, “
Hybrid functional calculations of DX centers in AlN and GaN
,”
Phys. Rev. B
89
,
085204
(
2014
).
18.
R.
Collazo
,
S.
Mita
,
J.
Xie
,
A.
Rice
,
J.
Tweedie
,
R.
Dalmau
, and
Z.
Sitar
, “
Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications
,”
Phys. Stat. Solidi C
8
,
2031
2033
(
2011
).
19.
E.
Iliopoulos
,
K. F.
Ludwig
,
T. D.
Moustakas
, and
S. N. G.
Chu
, “
Chemical ordering in AlGaN alloys grown by molecular beam epitaxy
,”
Appl. Phys. Lett.
78
,
463
465
(
2001
).
20.
S. M.
Islam
,
K.
Lee
,
J.
Verma
,
V.
Protasenko
,
S.
Rouvimov
,
S.
Bharadwaj
,
H.
Xing
, and
D.
Jena
, “
MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures
,”
Appl. Phys. Lett.
110
,
041108
(
2017
).
21.
B.
Daudin
,
A. M.
Siladie
,
M.
Gruart
,
M.
Den Hertog
,
C.
Bougerol
,
B.
Haas
,
J. L.
Rouvi re
,
E.
Robin
,
M. J.
Recio-Carretero
,
N.
Garro
, and
A.
Cros
, “
The role of surface diffusion in the growth mechanism of III-nitride nanowires and nanotubes
,”
Nanotechnology
32
,
085606
(
2021
).
22.
Y.
Wu
,
X.
Liu
,
P.
Wang
,
D. A.
Laleyan
,
K.
Sun
,
Y.
Sun
,
C.
Ahn
,
M.
Kira
,
E.
Kioupakis
, and
Z.
Mi
, “
Monolayer GaN excitonic deep ultraviolet light emitting diodes
,”
Appl. Phys. Lett.
116
,
013101
(
2020
).
23.
Y.
Taniyasu
and
M.
Kasu
, “
Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices
,”
Appl. Phys. Lett.
99
,
251112
(
2011
).
24.
V.
Jmerik
,
A.
Toropov
,
V.
Davydov
, and
S.
Ivanov
, “
Monolayer-thick GaN/AlN multilayer heterostructures for deep-ultraviolet optoelectronics
,”
Phys. Status Solidi-Rapid Res. Lett.
15
,
2100242
(
2021
).
25.
M.
Asif Khan
,
J. N.
Kuznia
,
D. T.
Olson
,
T.
George
, and
W. T.
Pike
, “
GaN/AlN digital alloy short‐period superlattices by switched atomic layer metalorganic chemical vapor deposition
,”
Appl. Phys. Lett.
63
,
3470
(
1993
).
26.
X. Y.
Cui
,
B.
Delley
, and
C.
Stampfl
, “
Band gap engineering of wurtzite and zinc-blende GaN/AlN superlattices from first principles
,”
J. Appl. Phys.
108
,
103701
(
2010
).
27.
W.
Sun
,
C. K.
Tan
, and
N.
Tansu
, “
AlN/GaN digital alloy for mid- and deep-ultraviolet optoelectronics
,”
Sci. Rep.
7
,
1
8
(
2017
).
28.
D.
Bayerl
and
E.
Kioupakis
, “
Room-temperature stability of excitons and transverse-electric polarized deep-ultraviolet luminescence in atomically thin GaN quantum wells
,”
Appl. Phys. Lett.
115
,
131101
(
2019
).
29.
K.
Shinohara
,
D.
Regan
,
I.
Milosavljevic
,
A. L.
Corrion
,
D. F.
Brown
,
P. J.
Willadsen
,
C.
Butler
,
A.
Schmitz
,
S.
Kim
,
V.
Lee
,
A.
Ohoka
,
P. M.
Asbeck
, and
M.
Micovic
, “
Electron velocity enhancement in laterally scaled GaN DH-HEMTs with fT of 260 GHz
,”
IEEE Electron Device Lett.
32
,
1074
1076
(
2011
).
30.
D. A.
Deen
,
D. F.
Storm
,
D. J.
Meyer
,
R.
Bass
,
S. C.
Binari
,
T.
Gougousi
, and
K. R.
Evans
, “
Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates
,”
Appl. Phys. Lett.
105
,
093503
(
2014
).
31.
Y.
Cao
and
D.
Jena
, “
High-mobility window for two-dimensional electron gases at ultrathin AlNGaN heterojunctions
,”
Appl. Phys. Lett.
90
,
182112
(
2007
).
32.
P.
Giannozzi
,
O.
Baseggio
,
P.
Bonfà
,
D.
Brunato
,
R.
Car
,
I.
Carnimeo
,
C.
Cavazzoni
,
S.
De Gironcoli
,
P.
Delugas
,
F.
Ferrari Ruffino
,
A.
Ferretti
,
N.
Marzari
,
I.
Timrov
,
A.
Urru
, and
S.
Baroni
, “
Quantum ESPRESSO toward the exascale
,”
J. Chem. Phys.
152
,
154105
(
2020
).
33.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
569
(
1980
).
34.
M. S.
Hybertsen
and
S. G.
Louie
, “
Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
,”
Phys. Rev. B
34
,
5390
5413
(
1986
).
35.
J.
Deslippe
,
G.
Samsonidze
,
D. A.
Strubbe
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
, “
BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures
,”
Comput. Phys. Commun.
183
,
1269
1289
(
2012
).
36.
S.
Poncé
,
E. R.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
133
(
2016
).
37.
J.
Singh
,
Electronic and Optoelectronic Properties of Semiconductor Structures
(
Cambridge University Press
,
2003
).
38.
M.
Qi
,
G.
Li
,
S.
Ganguly
,
P.
Zhao
,
X.
Yan
,
J.
Verma
,
B.
Song
,
M.
Zhu
,
K.
Nomoto
,
H.
Xing
, and
D.
Jena
, “
Strained GaN quantum-well FETs on single crystal bulk AlN substrates
,”
Appl. Phys. Lett.
110
,
063501
(
2017
).
39.
A.
Hickman
,
R.
Chaudhuri
,
S. J.
Bader
,
K.
Nomoto
,
K.
Lee
,
H. G.
Xing
, and
D.
Jena
, “
High breakdown voltage in RF AlN/GaN/AlN quantum well HEMTs
,”
IEEE Electron Device Lett.
40
,
1293
1296
(
2019
).
40.
I.
Vurgaftman
and
J. R.
Meyer
, “
Band parameters for nitrogen-containing semiconductors
,”
J. Appl. Phys.
94
,
3675
3696
(
2003
).
41.
J.
Fang
,
M. V.
Fischetti
,
R. D.
Schrimpf
,
R. A.
Reed
,
E.
Bellotti
, and
S. T.
Pantelides
, “
Electron transport properties of AlxGa1−xN/GaN transistors based on first-principles calculations and Boltzmann-equation Monte Carlo simulations
,”
Phys. Rev. Appl.
11
,
044045
(
2019
).
42.
Y.
Taniyasu
,
M.
Kasu
, and
T.
Makimoto
, “
Increased electron mobility in n-type Si-doped AlN by reducing dislocation density
,”
Appl. Phys. Lett.
89
,
182112
(
2006
).
43.
S.
Poncé
,
E. R.
Margine
, and
F.
Giustino
, “
Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors
,”
Phys. Rev. B
97
,
121201
(
2018
).
44.
S.
Adachi
,
Properties of Group-IV, III-V and II-VI Semiconductors
(
Wiley
,
Hoboken
,
2005
), pp.
1
387
.
45.
A.
Schleife
,
F.
Fuchs
,
C.
Rödl
,
J.
Furthmüller
, and
F.
Bechstedt
, “
Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations
,”
Appl. Phys. Lett.
94
,
012104
(
2009
).
46.
S.
Poncé
,
F.
Macheda
,
E. R.
Margine
,
N.
Marzari
,
N.
Bonini
, and
F.
Giustino
, “
First-principles predictions of Hall and drift mobilities in semiconductors
,”
Phys. Rev. Res.
3
,
043022
(
2021
).
47.
T.
Kabemura
,
S.
Ueda
,
Y.
Kawada
, and
K.
Horio
, “
Enhancement of breakdown voltage in AlGaN/GaN HEMTs: Field plate plus high-k passivation layer and high acceptor density in buffer layer
,”
IEEE Trans. Electron Devices
65
,
3848
3854
(
2018
).
48.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates
,”
Appl. Phys. Lett.
100
,
013504
(
2012
).
49.
H.
Niwa
,
J.
Suda
, and
T.
Kimoto
, “
21.7 kV 4H-SiC PiN diode with a space-modulated junction termination extension
,”
Appl. Phys. Express
5
,
064001
(
2012
).
50.
D.
Khachariya
,
S.
Mita
,
P.
Reddy
,
S.
Dangi
,
P.
Bagheri
,
M.
Hayden Breckenridge
,
R.
Sengupta
,
E.
Kohn
,
Z.
Sitar
,
R.
Collazo
, and
S.
Pavlidis
, “
Al0.85Ga0.15N/Al0.6Ga0.4N high electron mobility transistors on native AlN substrates with >9 MV/cm mesa breakdown fields
,” in
2021 Device Research Conference
(
IEEE
,
2021
), pp.
1
2
.
51.
A. A.
Allerman
,
A. M.
Armstrong
,
A. J.
Fischer
,
J. R.
Dickerson
,
M. H.
Crawford
,
M. P.
King
,
M. W.
Moseley
,
J. J.
Wierer
, and
R. J.
Kaplar
, “
Al0.3Ga0.7N PN diode with breakdown voltage >1600 V
,”
Electron. Lett.
52
,
1319
1321
(
2016
).
52.
A.
Nishikawa
,
K.
Kumakura
, and
T.
Makimoto
, “
High critical electric field exceeding 8 MV/cm measured using an AlGaN p-i-n vertical conducting diode on n-SiC substrate
,”
Jpn. J. Appl. Phys., Part 1
46
,
2316
2319
(
2007
).
53.
R. J.
Kaplar
,
O.
Slobodyan
,
J. D.
Flicker
, and
M. A.
Hollis
, “
(Invited) A new analysis of the dependence of critical electric field on semiconductor bandgap
,” in
ECS Meeting Abstracts
(
IOP Publishing
,
2019
), Vol.
MA2019-02
, p.
1334
.
54.
X.
Yan
,
I. S.
Esqueda
,
J.
Ma
,
J.
Tice
, and
H.
Wang
, “
High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure
,”
Appl. Phys. Lett.
112
,
032101
(
2018
).
55.
K. A.
Mengle
and
E.
Kioupakis
, “
Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: Impact on the mobility and breakdown field
,”
AIP Adv.
9
,
015313
(
2019
).
56.
S.
Poncé
and
F.
Giustino
, “
Structural, electronic, elastic, power, and transport properties of β-Ga2O3 from first principles
,”
Phys. Rev. Res.
2
,
033102
(
2020
).
57.
S.
Bajaj
,
F.
Akyol
,
S.
Krishnamoorthy
,
Y.
Zhang
, and
S.
Rajan
, “
AlGaN channel field effect transistors with graded heterostructure ohmic contacts
,”
Appl. Phys. Lett.
109
,
133508
(
2016
).
58.
T.
Razzak
,
S.
Hwang
,
A.
Coleman
,
H.
Xue
,
S. H.
Sohel
,
S.
Bajaj
,
Y.
Zhang
,
W.
Lu
,
A.
Khan
, and
S.
Rajan
, “
Design of compositionally graded contact layers for MOCVD grown high Al-content AlGaN transistors
,”
Appl. Phys. Lett.
115
,
043502
(
2019
).
59.
N.
Sanders
and
E.
Kioupakis
, “
Phonon- and defect-limited electron and hole mobility of diamond and cubic boron nitride: A critical comparison
,”
Appl. Phys. Lett.
119
,
062101
(
2021
).
60.
N.
Ma
,
N.
Tanen
,
A.
Verma
,
Z.
Guo
,
T.
Luo
,
H.
(Grace) Xing
, and
D.
Jena
, “
Intrinsic electron mobility limits in β-Ga2O3
,”
Appl. Phys. Lett.
109
,
212101
(
2016
).
61.
Y.
Kang
,
K.
Krishnaswamy
,
H.
Peelaers
, and
C. G.
Van De Walle
, “
Fundamental limits on the electron mobility of β-Ga2O3
,”
J. Phys.: Condens. Matter
29
,
234001
(
2017
).
62.
K.
Ghosh
and
U.
Singisetti
, “
Ab initio calculation of electron-phonon coupling in monoclinic β-Ga2O3 crystal
,”
Appl. Phys. Lett.
109
,
072102
(
2016
).
63.
O.
Mishima
,
J.
Tanaka
,
S.
Yamaoka
, and
O.
Fukunaga
, “
High-temperature cubic boron nitride P-N junction diode made at high pressure
,”
Science
238
,
181
183
(
1987
).
64.
E. A.
Paisley
,
M.
Brumbach
,
A. A.
Allerman
,
S.
Atcitty
,
A. G.
Baca
,
A. M.
Armstrong
,
R. J.
Kaplar
, and
J. F.
Ihlefeld
, “
Spectroscopic investigations of band offsets of MgO|AlxGa1−xN epitaxial heterostructures with varying AlN content
,”
Appl. Phys. Lett.
107
,
102101
(
2015
).
65.
S.
Dagli
,
K. A.
Mengle
, and
E.
Kioupakis
, “
Thermal conductivity of AlN, GaN, and AlxGa1−xN alloys as a function of composition, temperature, crystallographic direction, and isotope disorder from first principles
,” arXiv:1910.05440 (
2019
).
66.
R.
Rounds
,
B.
Sarkar
,
T.
Sochacki
,
M.
Bockowski
,
M.
Imanishi
,
Y.
Mori
,
R.
Kirste
,
R.
Collazo
, and
Z.
Sitar
, “
Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes
,”
J. Appl. Phys.
124
,
105106
(
2018
).
67.
R. L.
Xu
,
M.
Munõz Rojo
,
S. M.
Islam
,
A.
Sood
,
B.
Vareskic
,
A.
Katre
,
N.
Mingo
,
K. E.
Goodson
,
H. G.
Xing
,
D.
Jena
, and
E.
Pop
, “
Thermal conductivity of crystalline AlN and the influence of atomic-scale defects
,”
J. Appl. Phys.
126
,
185105
(
2019
).
68.
S. J.
Bader
,
H.
Lee
,
R.
Chaudhuri
,
S.
Huang
,
A.
Hickman
,
A.
Molnar
,
H. G.
Xing
,
D.
Jena
,
H. W.
Then
,
N.
Chowdhury
, and
T.
Palacios
, “
Prospects for wide bandgap and ultrawide bandgap CMOS devices
,”
IEEE Trans. Electron Devices
67
,
4010
4020
(
2020
).

Supplementary Material

You do not currently have access to this content.