Benefiting from good solubility of metal halide perovskites, low-temperature solution processes (including one- and two-step spin-coating) have become the most common approach for perovskite solar cells (PSCs). However, one confusing issue is that what are specifically effective strategies for the one-step process may not be applicable for the two-step process, and vice versa. Herein, the PSCs with the same perovskite composition and device configuration were prepared by one- and two-step processes, respectively. The results indicated that high performance PSCs with comparable power conversion efficiency over 22% were achieved by both methods, while the detailed photovoltaic parameters varied greatly depending on the one- or two-step process. Compared to the one-step counterpart, the two-step processed PSCs exhibit lower open-circuit voltage and fill factor, but superior short-circuit current, which was in-depth interpreted in terms of the crystalline growth mode, optical properties, defect types, and carrier transport mechanisms related to a perovskite film surface (including a top and a bottom surface). Understanding the root cause for such differences would be central toward identifying what is really crucial for further producing high performance PSCs.

1.
O.
Ergen
,
S.
Matt Gilbert
,
T.
Pham
,
S. J.
Turner
,
M. T. Z.
Tan
,
M. A.
Worsley
, and
A.
Zettl
,
Nat. Mater.
16
(
5
),
522
(
2017
).
2.
J.
Herterich
,
C.
Baretzky
,
M.
Unmüssig
,
C.
Maheu
,
N.
Glissmann
,
J.
Gutekunst
,
G.
Loukeris
,
T.
Mayer
,
M.
Kohlstädt
,
J. P.
Hofmann
, and
U.
Würfel
,
Sol. RRL
6
(
7
),
2200195
(
2022
).
3.
V.
Pecunia
,
J.
Zhao
,
C.
Kim
,
B. R.
Tuttle
,
J.
Mei
,
F.
Li
,
Y.
Peng
,
T. N.
Huq
,
R. L. Z.
Hoye
,
N. D.
Kelly
,
S. E.
Dutton
,
K.
Xia
,
J. L.
MacManus-Driscoll
, and
H.
Sirringhaus
,
Adv. Energy Mater.
11
(
22
),
2003968
(
2021
).
4.
Y.
Yuan
,
G.
Yan
,
R.
Hong
,
Z.
Liang
, and
T.
Kirchartz
,
Adv. Mater.
34
(
21
),
2108132
(
2022
).
5.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
,
J. Am. Chem. Soc.
131
(
17
),
6050
(
2009
).
6.
See https://www.nrel.gov/pv/cell-efficiency.html for “
NREL Research-Cell Efficiencies
(last accessed April,
2022
).
7.
Z.
Irshad
,
M.
Adnan
, and
J. K.
Lee
,
J. Mater. Sci.
57
(
3
),
1936
(
2022
).
8.
F.
Fu
,
T.
Feurer
,
T. P.
Weiss
,
S.
Pisoni
,
E.
Avancini
,
C.
Andres
,
S.
Buecheler
, and
A. N.
Tiwari
,
Nat. Energy
2
(
1
),
16190
(
2017
).
9.
S.-W.
Lee
,
S.
Bae
,
D.
Kim
, and
H.-S.
Lee
,
Adv. Mater.
32
(
51
),
2002202
(
2020
).
10.
M.
Adnan
and
J. K.
Lee
,
Sci. Rep.
8
(
1
),
2168
(
2018
).
11.
M.
Adnan
,
Z.
Irshad
, and
J. K.
Lee
,
RSC Adv.
10
(
48
),
29010
(
2020
).
12.
M.
Adnan
and
J. K.
Lee
,
RSC Adv.
10
(
9
),
5454
(
2020
).
13.
Y.
Yang
,
W.
Zhao
,
T.
Yang
,
J.
Liu
,
J.
Zhang
,
Y.
Fang
, and
S.
Liu
,
J. Mater. Chem. A
9
(
41
),
23597
(
2021
).
14.
B.
Chen
,
S.
Wang
,
X.
Zhang
,
W.
Zhu
,
Z.
Cao
, and
F.
Hao
,
Chem. Eng. J.
445
,
136769
(
2022
).
15.
L. E.
Mundt
,
J.
Tong
,
A. F.
Palmstrom
,
S. P.
Dunfield
,
K.
Zhu
,
J. J.
Berry
,
L. T.
Schelhas
, and
E. L.
Ratcliff
,
ACS Energy Lett.
5
(
11
),
3344
(
2020
).
16.
Z.
Irshad
,
M.
Adnan
, and
J. K.
Lee
,
J. Mater. Sci.
33
(
18
),
15132
(
2022
).
17.
Z.
Irshad
,
M.
Adnan
, and
J. K.
Lee
,
J. Phys. Chem. Solids
160
,
110374
(
2022
).
18.
J.
Wang
,
H.
Ma
,
A.
Wang
,
Z.
Li
,
J. i
Dong
,
Y.
Liu
,
S.
Gao
,
S.
Yan
,
X.
Chen
,
Y.
Li
,
Z.
Wu
,
W.
Xu
,
F.
Liu
,
F.
Wang
,
W.
Huang
, and
T.
Qin
,
Matter
5
(
7
),
2209
(
2022
).
19.
Y. C.
Kim
,
H. J.
An
,
D. H.
Kim
,
J.-M.
Myoung
,
Y. J.
Heo
, and
J. H.
Cho
,
Adv. Funct. Mater.
31
(
5
),
2005553
(
2021
).
20.
L.
Yuan
,
H.
Luo
,
J.
Wang
,
Z.
Xu
,
J.
Li
,
Q.
Jiang
, and
K.
Yan
,
J. Mater. Chem. A
9
(
8
),
4781
(
2021
).
21.
W.
Cai
,
Y.
Wang
,
W.
Shang
,
J.
Liu
,
M.
Wang
,
Q.
Dong
,
Y.
Han
,
W.
Li
,
H.
Ma
,
P.
Wang
,
J.
Guo
, and
Y.
Shi
,
Chem. Eng. J.
446
,
137033
(
2022
).
22.
F.
Liu
,
M.
Wang
,
X.
Liu
,
B.
Wang
,
C.
Li
,
C.
Liu
,
Z.
Lin
, and
F.
Huang
,
Nano Lett.
21
(
4
),
1643
(
2021
).
23.
H.
Cheng
,
C.
Liu
,
J.
Zhuang
,
J.
Cao
,
T.
Wang
,
W.-Y.
Wong
, and
F.
Yan
,
Adv. Funct. Mater.
32
(
36
),
2204880
(
2022
).
24.
W.
Liu
,
Z.
Hu
,
L.
Wang
,
M.
Cao
,
J.
Zhang
,
J.
Zhang
,
S.
Zhang
,
N.
Yuan
, and
J.
Ding
,
J. Inorg. Mater.
36
(
6
),
629
(
2021
).
25.
Y.
Xu
,
M.
Wang
,
Y.
Lei
,
Z.
Ci
, and
Z.
Jin
,
Adv. Energy Mater.
10
(
43
),
2002558
(
2020
).
26.
M.
Wang
,
Y.
Zhao
,
X.
Jiang
,
Y.
Yin
,
I.
Yavuz
,
P.
Zhu
,
A.
Zhang
,
G. S.
Han
,
H. S.
Jung
,
Y.
Zhou
,
W.
Yang
,
J.
Bian
,
S.
Jin
,
J.-W.
Lee
, and
Y.
Yang
,
Joule
6
(
5
),
1032
(
2022
).
27.
H.
Ma
,
M.
Wang
,
Y.
Wang
,
Q.
Dong
,
J.
Liu
,
Y.
Yin
,
J.
Zhang
,
M.
Pei
,
L.
Zhang
,
W.
Cai
,
L.
Shi
,
W.
Tian
,
S.
Jin
,
J.
Bian
, and
Y.
Shi
,
Chem. Eng. J.
442
,
136291
(
2022
).
28.
B.
Xiao
,
X.
Li
,
Z.
Yi
,
Y.
Luo
,
Q.
Jiang
, and
J.
Yang
,
ACS Appl. Mater. Interfaces
14
(
6
),
7962
(
2022
).
29.
Y.-C.
Shih
,
Y.-B.
Lan
,
C.-S.
Li
,
H.-C.
Hsieh
,
L.
Wang
,
C.-I.
Wu
, and
K.-F.
Lin
,
Small
13
(
22
),
1604305
(
2017
).
30.
Z.
Liu
,
Q.
Chen
,
J.-W.
Lee
,
Z.
Zhao
,
X.
Xu
,
Y.-T.
Hsieh
,
L.
Meng
,
P.
Sun
,
N.
De Marco
,
H.
Zhou
,
Y.-B.
Cheng
, and
Y.
Yang
,
Adv. Energy Mater.
8
(
23
),
1800568
(
2018
).
31.
F.
Wu
,
B.
Bahrami
,
K.
Chen
,
S.
Mabrouk
,
R.
Pathak
,
Y.
Tong
,
X.
Li
,
T.
Zhang
,
R.
Jian
, and
Q.
Qiao
,
ACS Appl. Mater. Interfaces
10
(
30
),
25604
(
2018
).
32.
S. N.
Habisreutinger
,
N. K.
Noel
, and
H. J.
Snaith
,
ACS Energy Lett.
3
(
10
),
2472
(
2018
).
33.
J.
Liu
,
Q.
Dong
,
M.
Wang
,
H.
Ma
,
M.
Pei
,
J.
Bian
, and
Y.
Shi
,
ACS Appl. Mater. Interfaces
13
(
47
),
56265
(
2021
).
34.
F.
Gao
,
Y.
Zhao
,
X.
Zhang
, and
J.
You
,
Adv. Energy Mater.
10
(
13
),
1902650
(
2020
).
35.
C.-M.
Tsai
,
N.
Mohanta
,
C.-Y.
Wang
,
Y.-P.
Lin
,
Y.-W.
Yang
,
C.-L.
Wang
,
C.-H.
Hung
, and
E. W.-G.
Diau
,
Angew. Chem., Int. Ed.
56
(
44
),
13819
(
2017
).
36.
P.
Srivastava
,
R.
Kumar
, and
M.
Bag
,
Phys. Chem. Chem. Phys.
23
(
18
),
10936
(
2021
).
37.
C.
Ma
,
B.
Kim
,
D.-H.
Kang
,
S.-W.
Kim
, and
N.-G.
Park
,
ACS Energy Lett.
6
(
8
),
2817
(
2021
).
38.
H.-W.
Kang
,
J.-W.
Lee
,
D.-Y.
Son
, and
N.-G.
Park
,
RSC Adv.
5
(
59
),
47334
(
2015
).
39.
P.
Caprioglio
,
C. M.
Wolff
,
O. J.
Sandberg
,
A.
Armin
,
B.
Rech
,
S.
Albrecht
,
D.
Neher
, and
M.
Stolterfoht
,
Adv. Energy Mater.
10
(
27
),
2000502
(
2020
).
40.
O.
Almora
,
K. T.
Cho
,
S.
Aghazada
,
I.
Zimmermann
,
G. J.
Matt
,
C. J.
Brabec
,
M. K.
Nazeeruddin
, and
G.
Garcia-Belmonte
,
Nano Energy
48
,
63
(
2018
).
41.
J.
Wang
,
S.
Fu
,
L.
Huang
,
Y.
Lu
,
X.
Liu
,
J.
Zhang
,
Z.
Hu
, and
Y.
Zhu
,
Adv. Energy Mater.
11
(
48
),
2102724
(
2021
).

Supplementary Material

You do not currently have access to this content.