Topological band theory provides a framework to establish the equivalence/inequivalence of bandgaps in photonic topological insulators. However, experimental discernment of bandgap topological characteristics encounters inherent measurement complexities, particularly beyond the terahertz frequencies. To surmount this difficulty, we resort to the prolific optical technique of spectroscopic ellipsometry and carry out detailed experimental examination of attributes of one-dimensional photonic crystal stopbands and, in consequence, identify an appropriate classifier of the implicit topological characteristics. It is found that governed by the bulk topology, the band edge locations in the dispersion diagram provide a conditional site for the appearance of zeros of a complex reflection ratio. This leads to a selective appearance of topologically robust phase singularities with integer (unity positive) topological charge. We demonstrate that the presence of these phase singularities on either the blue or the red band edges of the stopbands provides us with an experimental marker of their distinctive topological characteristics.

1.
Q.
Cheng
,
H.
Wang
,
Y.
Ke
,
T.
Chen
,
Y.
Yu
,
Y. S.
Kivshar
,
C.
Lee
, and
Y.
Pan
, “
Asymmetric topological pumping in nonparaxial photonics
,”
Nat. Commun.
13
,
249
(
2022
).
2.
D.
Smirnova
,
D.
Leykam
,
Y.
Chong
, and
Y.
Kivshar
, “
Nonlinear topological photonics
,”
Appl. Phys. Rev.
7
,
021306
(
2020
).
3.
S.
Mukherjee
,
M. D.
Liberto
,
P.
Öhberg
,
R. R.
Thomson
, and
N.
Goldman
, “
Experimental observation of Aharonov-Bohm cages in photonic lattices
,”
Phys. Rev. Lett.
121
,
075502
(
2018
).
4.
G.
Hu
,
C.
Zheng
,
J.
Ni
,
C.-W.
Qiu
, and
A.
Alù
, “
Enhanced light-matter interactions at photonic magic-angle topological transitions
,”
Appl. Phys. Lett.
118
,
211101
(
2021
).
5.
M.
Parto
,
Y. G.
Liu
,
B.
Bahari
,
M.
Khajavikhan
, and
D. N.
Christodoulides
, “
Non-Hermitian and topological photonics: Optics at an exceptional point
,”
Nanophotonics
10
,
403
423
(
2020
).
6.
Y.
Yu
,
W.
Song
,
C.
Chen
,
T.
Chen
,
H.
Ye
,
X.
Shen
,
Q.
Cheng
, and
T.
Li
, “
Phase transition of non-Hermitian topological edge states in microwave regime
,”
Appl. Phys. Lett.
116
,
211104
(
2020
).
7.
L.
Lu
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Topological photonics
,”
Nat. Photonics
8
,
821
829
(
2014
).
8.
Y.
Yang
,
Y.
Yamagami
,
X.
Yu
,
P.
Pitchappa
,
J.
Webber
,
B.
Zhang
,
M.
Fujita
,
T.
Nagatsuma
, and
R.
Singh
, “
Terahertz topological photonics for on-chip communication
,”
Nat. Photonics
14
,
446
451
(
2020
).
9.
M.
Kim
,
Z.
Jacob
, and
J.
Rho
, “
Recent advances in 2D, 3D and higher-order topological photonics
,”
Light
9
,
130
(
2020
).
10.
A.
Kumar
,
M.
Gupta
,
P.
Pitchappa
,
Y. J.
Tan
,
N.
Wang
, and
R.
Singh
, “
Topological sensor on a silicon chip
,”
Appl. Phys. Lett.
121
,
011101
(
2022
).
11.
W.
Gao
,
M.
Xiao
,
B.
Chen
,
E. Y.
Pun
,
C. T.
Chan
, and
W. Y.
Tam
, “
Controlling interface states in 1D photonic crystals by tuning bulk geometric phases
,”
Opt. Lett.
42
,
1500
1503
(
2017
).
12.
J.
Hu
,
W.
Liu
,
W.
Xie
,
W.
Zhang
,
E.
Yao
,
Y.
Zhang
, and
Q.
Zhan
, “
Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system
,”
Opt. Lett.
44
,
5642
5645
(
2019
).
13.
J.
Wu
and
Y. M.
Qing
, “
Strong nonreciprocal radiation with topological photonic crystal heterostructure
,”
Appl. Phys. Lett.
121
,
112201
(
2022
).
14.
M.
Xiao
,
Z.
Zhang
, and
C. T.
Chan
, “
Surface impedance and bulk band geometric phases in one-dimensional systems
,”
Phys. Rev. X
4
,
021017
(
2014
).
15.
Y.
Hatsugai
, “
Chern number and edge states in the integer quantum Hall effect
,”
Phys. Rev. Lett.
71
,
3697
(
1993
).
16.
F.
Cardano
,
A.
D'Errico
,
A.
Dauphin
 et al, “
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
,”
Nat. Commun.
8
,
15516
(
2017
).
17.
C.
Schmidt
,
A.
Palatnik
,
M.
Sudzius
,
S.
Meister
, and
K.
Leo
, “
Coupled topological interface states
,”
Phys. Rev. B
103
,
085412
(
2021
).
18.
W. S.
Gao
,
M.
Xiao
,
C. T.
Chan
, and
W. Y.
Tam
, “
Determination of Zak phase by reflection phase in 1D photonic crystals
,”
Opt. Lett.
40
,
5259
5262
(
2015
).
19.
M.
Atala
,
M.
Aidelsburger
,
J. T.
Barreiro
,
D.
Abanin
,
T.
Kitagawa
,
E.
Demler
, and
I.
Bloch
, “
Direct measurement of the Zak phase in topological Bloch bands
,”
Nat. Phys.
9
,
795
800
(
2013
).
20.
H.
Xu
,
K.
Zhang
,
L.
Jin
, and
Z.
Song
, “
Signature of edge states in resonant wave scattering
,”
Phys. Rev. A
105
,
033501
(
2022
).
21.
R.
Mao
,
X.
Xu
,
J.
Wang
,
C.
Xu
,
G.
Qian
,
H.
Cai
,
S.-Y.
Zhu
, and
D.-W.
Wang
, “
Measuring Zak phase in room-temperature atoms
,”
Light
11
,
291
(
2022
).
22.
W.
Zhu
,
Y.-Q.
Ding
,
J.
Ren
,
Y.
Sun
,
Y.
Li
,
H.
Jiang
, and
H.
Chen
, “
Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials
,”
Phys. Rev. B
97
,
195307
(
2018
).
23.
Y. M.
Qing
,
H. F.
Ma
,
L. W.
Wu
, and
T. J.
Cui
, “
Manipulating the light-matter interaction in a topological photonic crystal heterostructure
,”
Opt. Express
28
,
34904
34915
(
2020
).
24.
Q.
Huang
,
Z.
Guo
,
J.
Feng
,
C.
Yu
,
H.
Jiang
,
Z.
Zhang
,
Z.
Wang
, and
H.
Chen
, “
Observation of a topological edge state in the x-ray band
,”
Laser Photonics Rev.
13
,
1800339
(
2019
).
25.
E.
Garcia-Caurel
,
A.
De Martino
,
J.-P.
Gaston
, and
L.
Yan
, “
Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization
,”
Appl. Spectrosc.
67
,
1
21
(
2013
).
26.
P. A.
Thomas
,
W. J.
Tan
,
H. A.
Fernandez
, and
W. L.
Barnes
, “
A new signature for strong light–matter coupling using spectroscopic ellipsometry
,”
Nano Lett.
20
,
6412
6419
(
2020
).
27.
N. K.
Gupta
,
S.
Srinivasu
,
A. K.
Tiwari
,
H.
Wanare
, and
S. A.
Ramakrishna
, “
Realizing quasi-monochromatic switchable thermal emission from electro-optically induced topological phase transitions
,”
Sci. Rep.
12
,
7400
(
2022
).
28.
P.
Yeh
,
A.
Yariv
, and
C.-S.
Hong
, “
Electromagnetic propagation in periodic stratified media. I. General theory
,”
J. Opt. Soc. Am.
67
,
423
438
(
1977
).
29.
P. A.
Thomas
,
K. S.
Menghrajani
, and
W. L.
Barnes
, “
All-optical control of phase singularities using strong light-matter coupling
,”
Nat. Commun.
13
,
1809
(
2022
).
30.
K. V.
Sreekanth
,
S.
Sreejith
,
S.
Han
,
A.
Mishra
,
X.
Chen
,
H.
Sun
,
C. T.
Lim
, and
R.
Singh
, “
Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity
,”
Nat. Commun.
9
,
369
(
2018
).
31.
S.
Samdani
,
A.
Kala
,
R.
Kaurav
,
S.
Kaladharan
, and
V. G.
Achanta
, “
Reusable biosensor based on differential phase detection at the point of darkness
,”
Adv. Photonics Res.
2
,
2000147
(
2021
).
32.
N. K.
Gupta
,
G.
Singh
,
S.
Srinivasu
,
H.
Wanare
,
K. V.
Srivastava
,
J.
Ramkumar
, and
S. A.
Ramakrishna
, “
Singular-phase characteristics of electromagnetic absorbers and a framework for low-RCS target detection
,”
IEEE Antennas Wireless Propag. Lett.
(published online
2022
).
33.
M.
Balistreri
,
J. P.
Korterik
,
L.
Kuipers
, and
N.
van Hulst
, “
Local observations of phase singularities in optical fields in waveguide structures
,”
Phys. Rev. Lett.
85
,
294
(
2000
).
34.
D. P.
Ghai
,
P.
Senthilkumaran
, and
R.
Sirohi
, “
Single-slit diffraction of an optical beam with phase singularity
,”
Opt. Lasers Eng.
47
,
123
126
(
2009
).

Supplementary Material

You do not currently have access to this content.