Using micromagnetic simulations, we study the interplay between strongly voltage-controlled magnetic anisotropy (VCMA), ΔK=±200 kJ/m3, and gate width, w= 10–400 nm, in voltage-gated W/CoFeB/MgO based nano-constriction spin Hall nano-oscillators. The VCMA modifies the local magnetic properties such that the magnetodynamics transitions between regimes of (i) confinement, (ii) tuning, and (iii) separation with qualitatively different behaviors. We find that the strongest tuning is achieved for gate widths of the same size as the constriction width, for which the effective damping can be increased an order of magnitude compared to its intrinsic value. As a consequence, voltage control remains efficient over a very large frequency range, and subsequent manufacturing advances could allow spin Hall nano-oscillators to be easily integrated into next-generation electronics for further fundamental studies and industrial applications.

1.
L.
Liu
,
C.-F.
Pai
,
D. C.
Ralph
, and
R. A.
Buhrman
, “
Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices
,”
Phys. Rev. Lett.
109
,
186602
(
2012
).
2.
V. E.
Demidov
,
S.
Urazhdin
,
H.
Ulrichs
,
V.
Tiberkevich
,
A.
Slavin
,
D.
Baither
,
G.
Schmitz
, and
S. O.
Demokritov
, “
Magnetic nano-oscillator driven by pure spin current
,”
Nat. Mater.
11
,
1028
1031
(
2012
).
3.
R. H.
Liu
,
W. L.
Lim
, and
S.
Urazhdin
, “
Spectral characteristics of the microwave emission by the spin Hall nano-oscillator
,”
Phys. Rev. Lett.
110
,
147601
(
2013
).
4.
V. E.
Demidov
,
H.
Ulrichs
,
S. V.
Gurevich
,
S. O.
Demokritov
,
V. S.
Tiberkevich
,
A. N.
Slavin
,
A.
Zholud
, and
S.
Urazhdin
, “
Synchronization of spin Hall nano-oscillators to external microwave signals
,”
Nat. Commun.
5
,
3179
(
2014
).
5.
V. E.
Demidov
,
S.
Urazhdin
,
A.
Zholud
,
A. V.
Sadovnikov
, and
S. O.
Demokritov
, “
Nanoconstriction-based spin-Hall nano-oscillator
,”
Appl. Phys. Lett.
105
,
172410
(
2014
).
6.
Z.
Duan
,
A.
Smith
,
L.
Yang
,
B.
Youngblood
,
J.
Lindner
,
V. E.
Demidov
,
S. O.
Demokritov
, and
I. N.
Krivorotov
, “
Nanowire spin torque oscillator driven by spin orbit torques
,”
Nat. Commun.
5
,
5616
(
2014
).
7.
N.
Sato
,
K.
Schultheiss
,
L.
Körber
,
N.
Puwenberg
,
T.
Mühl
,
A. A.
Awad
,
S. S.
Arekapudi
,
O.
Hellwig
,
J.
Fassbender
, and
H.
Schultheiss
, “
Domain wall based spin-Hall nano-oscillators
,”
Phys. Rev. Lett.
123
,
57204
(
2019
).
8.
J. E.
Hirsch
, “
Spin Hall effect
,”
Phys. Rev. Lett.
83
,
1834
1837
(
1999
).
9.
A.
Hoffmann
, “
Spin Hall effects in metals
,”
IEEE Trans. Magn.
49
,
5172
5193
(
2013
).
10.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
,
1213
1260
(
2015
).
11.
J. C.
Slonczewski
, “
Current-driven excitation of magnetic multilayers
,”
J. Magn. Magn. Mater.
159
,
L1
L7
(
1996
).
12.
L.
Berger
, “
Emission of spin waves by a magnetic multilayer traversed by a current
,”
Phys. Rev. B
54
,
9353
9358
(
1996
).
13.
D. C.
Ralph
and
M. D.
Stiles
, “
Spin transfer torques
,”
J. Magn. Magn. Mater.
320
,
1190
1216
(
2008
).
14.
A. A.
Awad
,
P.
Dürrenfeld
,
A.
Houshang
,
M.
Dvornik
,
E.
Iacocca
,
R. K.
Dumas
, and
J.
Åkerman
, “
Long-range mutual synchronization of spin Hall nano-oscillators
,”
Nat. Phys.
13
,
292
299
(
2017
).
15.
P.
Dürrenfeld
,
A. A.
Awad
,
A.
Houshang
,
R. K.
Dumas
, and
J.
Åkerman
, “
A 20 nm spin Hall nano-oscillator
,”
Nanoscale
9
,
1285
1291
(
2017
).
16.
H.
Mazraati
,
S.
Chung
,
A.
Houshang
,
M.
Dvornik
,
L.
Piazza
,
F.
Qejvanaj
,
S.
Jiang
,
T. Q.
Le
,
J.
Weissenrieder
, and
J.
Åkerman
, “
Low operational current spin Hall nano-oscillators based on NiFe/w bilayers
,”
Appl. Phys. Lett.
109
,
242402
(
2016
).
17.
M.
Zahedinejad
,
H.
Mazraati
,
H.
Fulara
,
J.
Yue
,
S.
Jiang
,
A. A.
Awad
, and
J.
Åkerman
, “
CMOS compatible W/CoFeB/MgO spin Hall nano-oscillators with wide frequency tunability
,”
Appl. Phys. Lett.
112
,
132404
132405
(
2018
).
18.
H.
Mazraati
,
S. R.
Etesami
,
S. A. H.
Banuazizi
,
S.
Chung
,
A.
Houshang
,
A. A.
Awad
,
M.
Dvornik
, and
J.
Åkerman
, “
Auto-oscillating spin-wave modes of constriction-based spin Hall nano-oscillators in weak in-plane fields
,”
Phys. Rev. Appl.
10
,
054017
(
2018
).
19.
A. A.
Awad
,
A.
Houshang
,
M.
Zahedinejad
,
R.
Khymyn
, and
J.
Åkerman
, “
Width dependent auto-oscillating properties of constriction based spin Hall nano-oscillators
,”
Appl. Phys. Lett.
116
,
232401
(
2020
).
20.
T.
Hache
,
T.
Weinhold
,
K.
Schultheiss
,
J.
Stigloher
,
F.
Vilsmeier
,
C.
Back
,
S. S.
Arekapudi
,
O.
Hellwig
,
J.
Fassbender
, and
H.
Schultheiss
, “
Combined frequency and time domain measurements on injection-locked, constriction-based spin Hall nano-oscillators
,”
Appl. Phys. Lett.
114
,
102403
(
2019
).
21.
M.
Zahedinejad
,
A. A.
Awad
,
S.
Muralidhar
,
R.
Khymyn
,
H.
Fulara
,
H.
Mazraati
,
M.
Dvornik
, and
J.
Åkerman
, “
Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing
,”
Nat. Nanotechnol.
15
,
47
(
2020
).
22.
K.
Yogendra
,
D.
Fan
,
B.
Jung
, and
K.
Roy
, “
Magnetic pattern recognition using injection-locked spin-torque nano-oscillators
,”
IEEE Trans. Electron Devices
63
,
1674
1680
(
2016
).
23.
M.
Romera
,
P.
Talatchian
,
S.
Tsunegi
,
F. A.
Araujo
,
V.
Cros
,
P.
Bortolotti
,
J.
Trastoy
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
M.
Ernoult
,
D.
Vodenicarevic
,
T.
Hirtzlin
,
N.
Locatelli
,
D.
Querlioz
, and
J.
Grollier
, “
Vowel recognition with four coupled spin-torque nano-oscillators
,”
Nature
563
,
230
(
2018
).
24.
B. C.
McGoldrick
,
J. Z.
Sun
, and
L.
Liu
, “
Ising machine based on electrically coupled spin Hall nano-oscillators
,”
Phys. Rev. Appl.
17
,
014006
(
2022
).
25.
D. I.
Albertsson
,
M.
Zahedinejad
,
A.
Houshang
,
R.
Khymyn
,
J.
Åkerman
, and
A.
Rusu
, “
Ultrafast Ising machines using spin torque nano-oscillators
,”
Appl. Phys. Lett.
118
,
112404
(
2021
).
26.
A.
Houshang
,
M.
Zahedinejad
,
S.
Muralidhar
,
J.
Chȩciński
,
R.
Khymyn
,
M.
Rajabali
,
H.
Fulara
,
A. A.
Awad
,
M.
Dvornik
, and
J.
Åkerman
, “
Phase-binarized spin Hall nano-oscillator arrays: Towards spin Hall Ising machines
,”
Phys. Rev. Appl.
17
,
014003
(
2022
).
27.
S.
Muralidhar
,
A.
Houshang
,
A.
Alemán
,
R.
Khymyn
,
A. A.
Awad
, and
J.
Åkerman
, “
Optothermal control of spin Hall nano-oscillators
,”
Appl. Phys. Lett.
120
,
262401
(
2022
).
28.
H.
Fulara
,
M.
Zahedinejad
,
R.
Khymyn
,
M.
Dvornik
,
S.
Fukami
,
S.
Kanai
,
H.
Ohno
, and
J.
Åkerman
, “
Giant voltage-controlled modulation of spin Hall nano-oscillator damping
,”
Nat. Commun.
11
,
4006
(
2020
).
29.
M.
Zahedinejad
,
H.
Fulara
,
R.
Khymyn
,
A.
Houshang
,
M.
Dvornik
,
S.
Fukami
,
S.
Kanai
,
H.
Ohno
, and
J.
Åkerman
, “
Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing
,”
Nat Mater.
21
,
81
87
(
2022
).
30.
J.-G.
Choi
,
J.
Park
,
M.-G.
Kang
,
D.
Kim
,
J.-S.
Rieh
,
K.-J.
Lee
,
K.-J.
Kim
, and
B.-G.
Park
, “
Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators
,”
Nat. Commun.
13
,
3783
(
2022
).
31.
COMSOL, “
Comsol multiphysics software
.”
32.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F. G.
Sanchez
, and
B.
van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
33.
A.
Kumar
,
M.
Rajabali
,
V. H.
González
,
M.
Zahedinejad
,
A.
Houshang
, and
J.
Åkerman
, “
Fabrication of voltage-gated spin Hall nano-oscillators
,”
Nanoscale
14
,
1432
(
2022
).
34.
A.
Slavin
and
V.
Tiberkevich
, “
Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet
,”
Phys. Rev. Lett.
95
,
237201
(
2005
).
35.
M.
Dvornik
,
A. A.
Awad
, and
J.
Åkerman
, “
Origin of magnetization auto-oscillations in constriction-based spin Hall nano-oscillators
,”
Phys. Rev. Appl.
9
,
014017
(
2018
).
36.
R. H.
Liu
,
L.
Chen
,
S.
Urazhdin
, and
Y. W.
Du
, “
Characteristics of a spin-current auto-oscillator with an electric field
,”
Phys. Rev. Appl.
8
(2),
021001
(
2017
).
You do not currently have access to this content.