Phonon hydrodynamics, a collective motion of phonons, has recently attracted renewed attention since its temperature window has been greatly extended in layered materials. The exploration of phonon hydrodynamics bears importance in understanding phonon collective behavior, and its window is crucial for determining the phonon transport regime and engineering the heat transport. Thus, strategies for continuous tuning of the hydrodynamic window are needed, but it remains a challenge. In this work, we demonstrate that the phonon hydrodynamic window in bilayer graphene can be strongly altered by the strain based on theoretical calculations. In particular, the phonon hydrodynamics can be observed at 60 K in unstrained bilayer graphene, while only 0.25% strain can reduce this temperature to 28 K. This strong strain dependence not only provides an efficient way of modulating the phonon collective behavior but also renders a possibility of strain-induced transition of phonon transport regime.

1.
G.
Chen
,
Nat. Rev. Phys.
3
,
555
569
(
2021
).
2.
D. G.
Cahill
,
P. V.
Braun
,
G.
Chen
,
D. R.
Clarke
,
S.
Fan
,
K. E.
Goodson
,
P.
Keblinski
,
W. P.
King
,
G. D.
Mahan
,
A.
Majumdar
 et al,
Appl. Phys. Rev.
1
,
011305
(
2014
).
3.
J. A.
Johnson
,
A.
Maznev
,
J.
Cuffe
,
J. K.
Eliason
,
A. J.
Minnich
,
T.
Kehoe
,
C. M. S.
Torres
,
G.
Chen
, and
K. A.
Nelson
,
Phys. Rev. Lett.
110
,
025901
(
2013
).
4.
J. B. J.
Baron Fourier
,
The Analytical Theory of Heat
(
The University Press
,
1878
).
5.
K.
Ghosh
,
A.
Kusiak
, and
J.-L.
Battaglia
,
J. Phys. Condens. Matter.
34
,
323001
(
2022
).
6.
X.
Gu
,
Y.
Wei
,
X.
Yin
,
B.
Li
, and
R.
Yang
,
Rev. Mod. Phys.
90
,
041002
(
2018
).
7.
C.
Liu
,
P.
Lu
,
W.
Chen
,
Y.
Zhao
, and
Y.
Chen
,
Phys. Chem. Chem. Phys.
23
,
26030
26060
(
2021
).
8.
Y.
Guo
and
M.
Wang
,
Phys. Rep.
595
,
1
44
(
2015
).
9.
S.
Lee
and
X.
Li
, “
Hydrodynamic phonon transport: Past, present and prospects
,” in
Nanoscale Energy Transport: Emerging Phenomena, Methods and Applications
(
IOP Publishing
,
2020
).
10.
C.
Yu
,
Y.
Ouyang
, and
J.
Chen
,
J. Appl. Phys.
130
,
010902
(
2021
).
11.
J.
Chen
,
X.
Xu
,
J.
Zhou
, and
B.
Li
,
Rev. Mod. Phys.
94
,
025002
(
2022
).
12.
N.
Li
,
J.
Ren
,
L.
Wang
,
G.
Zhang
,
P.
Hänggi
, and
B.
Li
,
Rev. Mod. Phys.
84
,
1045
(
2012
).
13.
R.
Peierls
and
R. E.
Peierls
,
Quantum Theory of Solids
(
Oxford University Press
,
1955
).
14.
C. C.
Ackerman
,
B.
Bertman
,
H. A.
Fairbank
, and
R.
Guyer
,
Phys. Rev. Lett.
16
,
789
(
1966
).
15.
C.
Ackerman
and
W.
Overton
, Jr.
,,
Phys. Rev. Lett.
22
,
764
(
1969
).
16.
D. D.
Joseph
and
L.
Preziosi
,
Rev. Mod. Phys.
61
,
41
(
1989
).
17.
T.
McNelly
,
S.
Rogers
,
D.
Channin
,
R.
Rollefson
,
W.
Goubau
,
G.
Schmidt
,
J.
Krumhansl
, and
R.
Pohl
,
Phys. Rev. Lett.
24
,
100
(
1970
).
18.
H. E.
Jackson
,
C. T.
Walker
, and
T. F.
McNelly
,
Phys. Rev. Lett.
25
,
26
(
1970
).
19.
A.
Beardo
,
M.
López-Suárez
,
L. A.
Pérez
,
L.
Sendra
,
M. I.
Alonso
,
C.
Melis
,
J.
Bafaluy
,
J.
Camacho
,
L.
Colombo
,
R.
Rurali
 et al,
Sci. Adv.
7
,
1
7
(
2021
).
20.
S.
Huberman
,
R. A.
Duncan
,
K.
Chen
,
B.
Song
,
V.
Chiloyan
,
Z.
Ding
,
A. A.
Maznev
,
G.
Chen
, and
K. A.
Nelson
,
Science
364
,
375
379
(
2019
).
21.
M.-Y.
Shang
,
W.-H.
Mao
,
N.
Yang
,
B.
Li
, and
J.-T.
,
Phys. Rev. B
105
,
165423
(
2022
).
22.
V.
Martelli
,
J. L.
Jiménez
,
M.
Continentino
,
E.
Baggio-Saitovitch
, and
K.
Behnia
,
Phys. Rev. Lett.
120
,
125901
(
2018
).
23.
Y.
Machida
,
N.
Matsumoto
,
T.
Isono
, and
K.
Behnia
,
Science
367
,
309
312
(
2020
).
24.
Y.
Machida
,
A.
Subedi
,
K.
Akiba
,
A.
Miyake
,
M.
Tokunaga
,
Y.
Akahama
,
K.
Izawa
, and
K.
Behnia
,
Sci. Adv.
4
,
eaat3374
(
2018
).
25.
R.
Gurzhi
,
Sov. Phys. JETP
19
,
490
(
1964
).
26.
R.
Gurzhi
and
S.
Shevchenko
,
Sov. Phys. JETP
27
,
863
(
1968
).
27.
D. W.
Pohl
and
V.
Irniger
,
Phys. Rev. Lett.
36
,
480
483
(
1976
).
28.
L.
Lindsay
,
D.
Broido
, and
N.
Mingo
,
Phys. Rev. B
83
,
235428
(
2011
).
29.
M.-Y.
Shang
,
C.
Zhang
,
Z.
Guo
, and
J.-T.
,
Sci. Rep.
10
,
8272
(
2020
).
30.
Z.
Ding
,
K.
Chen
,
B.
Song
,
J.
Shin
,
A. A.
Maznev
,
K. A.
Nelson
, and
G.
Chen
,
Nat. Commun.
13
,
285
(
2022
).
31.
X.
Huang
,
Y.
Guo
,
Y.
Wu
,
S.
Masubuchi
,
K.
Watanabe
,
T.
Taniguchi
,
Z.
Zhang
,
S.
Volz
,
T.
Machida
, and
M.
Nomura
, arXiv preprint arXiv:2207.01469 (
2022
).
32.
Z.
Ding
,
J.
Zhou
,
B.
Song
,
V.
Chiloyan
,
M.
Li
,
T.-H.
Liu
, and
G.
Chen
,
Nano Lett.
18
,
638
649
(
2018
).
33.
X.
Li
and
S.
Lee
,
Phys. Rev. B
99
,
085202
(
2019
).
34.
K.
Ghosh
,
A.
Kusiak
, and
J.-L.
Battaglia
,
Phys. Rev. Mater.
5
,
073605
(
2021
).
35.
S.-I.
Tamura
,
Phys. Rev. B
27
,
858
(
1983
).
36.
C.
Ratsifaritana
and
P.
Klemens
,
Int. J. Thermophys.
8
,
737
750
(
1987
).
37.
F.
Ma
,
H.
Zheng
,
Y.
Sun
,
D.
Yang
,
K.
Xu
, and
P. K.
Chu
,
Appl. Phys. Lett.
101
,
111904
(
2012
).
38.
M.
Guo
,
Y.
Qian
,
H.
Qi
,
K.
Bi
, and
Y.
Chen
,
Carbon
157
,
185
190
(
2020
).
39.
Y.-J.
Zeng
,
Y.-X.
Feng
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
118
,
183103
(
2021
).
40.
K.
Nakagawa
,
K.
Satoh
,
S.
Murakami
,
K.
Takei
,
S.
Akita
, and
T.
Arie
,
Sci. Rep.
11
,
19533
(
2021
).
41.
X.-H.
Cao
,
D.
Wu
,
J.
Zeng
,
N.-N.
Luo
,
W.-X.
Zhou
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
119
,
263901
(
2021
).
42.
H.
Xie
,
T.
Ouyang
,
É.
Germaneau
,
G.
Qin
,
M.
Hu
, and
H.
Bao
,
Phys. Rev. B
93
,
075404
(
2016
).
43.
X.-K.
Chen
,
Z.-X.
Xie
,
W.-X.
Zhou
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
109
,
023101
(
2016
).
44.
J.-S.
Wang
,
J.
Wang
, and
J.
,
Eur. Phys. J. B
62
,
381
404
(
2008
).
45.
D.
Li
,
J.
He
,
G.
Ding
,
Q.
Tang
,
Y.
Ying
,
J.
He
,
C.
Zhong
,
Y.
Liu
,
C.
Feng
,
Q.
Sun
 et al,
Adv. Funct. Mater.
28
,
1801685
(
2018
).
46.
L.
Lindsay
,
W.
Li
,
J.
Carrete
,
N.
Mingo
,
D.
Broido
, and
T.
Reinecke
,
Phys. Rev. B
89
,
155426
(
2014
).
47.
Y.
Kuang
,
L.
Lindsay
, and
B.
Huang
,
Nano Lett.
15
,
6121
6127
(
2015
).
48.
Y.
Kuang
,
L.
Lindsay
,
S.
Shi
,
X.
Wang
, and
B.
Huang
,
Int. J. Heat Mass Transfer
101
,
772
778
(
2016
).
49.
H.
Pan
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Phys. Rev. B
105
,
064401
(
2022
).
50.
Z.-K.
Ding
,
Y.-J.
Zeng
,
H.
Pan
,
N.
Luo
,
J.
Zeng
,
L.-M.
Tang
, and
K.-Q.
Chen
,
Phys. Rev. B
106
,
L121401
(
2022
).
51.
N.
Bonini
,
J.
Garg
, and
N.
Marzari
,
Nano Lett.
12
,
2673
2678
(
2012
).
52.
Y.
Hu
,
D.
Li
,
Y.
Yin
,
S.
Li
,
G.
Ding
,
H.
Zhou
, and
G.
Zhang
,
Nanotechnology
31
,
335711
(
2020
).
53.
F.
Duan
,
C.
Shen
,
H.
Zhang
, and
G.
Qin
,
Phys. Rev. B
105
,
125406
(
2022
).
54.
J.
Callaway
,
Phys. Rev.
113
,
1046
(
1959
).
55.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
,
Comput. Phys. Commun.
185
,
1747
1758
(
2014
).
56.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
50
(
1996
).
57.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
5
(
2015
).
58.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
59.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
60.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
J. Phys. Condens. Matter
22
,
022201
(
2010
).
61.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
Phys. Rev. B
83
,
195131
(
2011
).
62.
E.
Hazrati
,
G. D.
Wijs
, and
G.
Brocks
,
Phys. Rev. B
90
,
155448
(
2014
).
63.
P. B.
Allen
,
Phys. Rev. B
88
,
144302
(
2013
).
64.
P. G.
Klemens
, “
Thermal conductivity of solids at low temperatures
,” in
Low Temperature Physics I/Kältephysik I
(
Springer
,
1956
) pp.
198
281
.
65.
A.
Ward
,
D.
Broido
,
D. A.
Stewart
, and
G.
Deinzer
,
Phys. Rev. B
80
,
125203
(
2009
).
66.
S.
Lee
,
D.
Broido
,
K.
Esfarjani
, and
G.
Chen
,
Nat. Commun.
6
,
6290
(
2015
).
67.
A.
Cepellotti
,
G.
Fugallo
,
L.
Paulatto
,
M.
Lazzeri
,
F.
Mauri
, and
N.
Marzari
,
Nat. Commun.
6
,
6400
(
2015
).
68.
A. E.
Sachat
,
F.
Könemann
,
F.
Menges
,
E.
Del Corro
,
J. A.
Garrido
,
C. S.
Torres
,
F.
Alzina
, and
B.
Gotsmann
,
2D Mater.
6
,
025034
(
2019
).
69.
M.-H.
Bae
,
Z.
Li
,
Z.
Aksamija
,
P. N.
Martin
,
F.
Xiong
,
Z.-Y.
Ong
,
I.
Knezevic
, and
E.
Pop
,
Nat. Commun.
4
,
1734
(
2013
).
70.
W.
Bausch
,
Phys. Status Solidi (b)
52
,
253
262
(
1972
).
71.
H.
Casimir
,
Physics
5
,
495
500
(
1938
).
72.
V. M.
Pereira
,
A. C.
Neto
,
H.
Liang
, and
L.
Mahadevan
,
Phys. Rev. Lett.
105
,
156603
(
2010
).
73.
A.
Fasolino
,
J.
Los
, and
M. I.
Katsnelson
,
Nat. Mater.
6
,
858
861
(
2007
).
74.
P.
San-Jose
,
A.
Gutiérrez-Rubio
,
M.
Sturla
, and
F.
Guinea
,
Phys. Rev. B
90
,
075428
(
2014
).

Supplementary Material

You do not currently have access to this content.