Owing to the inherent properties combining high ionic conductivity and electrochemical stability, the lithium triborates (LBOs) have emerged as a promising solid-state electrolyte for next-generation batteries. Specific fundamental details of the ionic conduction mechanism and related physicochemical properties remain to be understood. In this study, using the first-principles density functional theory calculations, we present a systematic computational investigation on LBOs in the respect of electronic structures, mechanical and thermodynamic properties, Li-ion transport, and interfacial (with Li metal) behaviors. Our results show that LBO is a thermodynamically and mechanically stable insulator with an indirect wide bandgap of 6.4 eV. Notably, LBOs could behave as a fast Li-ion conductor with a low migration energy barrier (15 meV) and are characterized by a zig–zag Li+-diffusion path along the c direction. We found that the interface between Li metal and LBO is both physically and chemically stable with no new phase formed while exhibiting a metallic character due to the charge transfer from a Li metal. Our study highlights the intriguing promise of LBOs as solid-state electrolytes for high-energy cells.

1.
A.
Manthiram
,
X. W.
Yu
, and
S. F.
Wang
, “
Lithium battery chemistries enabled by solid-state electrolytes
,”
Nat. Rev. Mater.
2
(
4
),
16103
(
2017
).
2.
A. M.
Nolan
,
Y. Z.
Zhu
,
X. F.
He
,
Q.
Bai
, and
Y. F.
Mo
, “
Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries
,”
Joule
2
(
10
),
2016
(
2018
).
3.
J. C.
Bachman
,
S.
Muy
,
A.
Grimaud
,
H. H.
Chang
,
N.
Pour
,
S. F.
Lux
,
O.
Paschos
,
F.
Maglia
,
S.
Lupart
,
P.
Lamp
 et al, “
Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction
,”
Chem. Rev
116
(
1
),
140
(
2016
).
4.
V.
Thangadurai
and
W.
Weppner
, “
Recent progress in solid oxide and lithium ion conducting electrolytes research
,”
Ionics
12
(
1
),
81
(
2006
).
5.
K.
Xu
, “
Electrolytes and interphases in Li-ion batteries and beyond
,”
Chem. Rev
114
(
23
),
11503
(
2014
).
6.
F.
Mizuno
,
A.
Hayashi
,
K.
Tadanaga
, and
M.
Tatsumisago
, “
New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses
,”
Adv. Mater.
17
(
7
),
918
(
2005
).
7.
X. G.
Han
,
Y. H.
Gong
,
K.
Fu
,
X. F.
He
,
G. T.
Hitz
,
J. Q.
Dai
,
A.
Pearse
,
B. Y.
Liu
,
H.
Wang
,
G.
Rublo
 et al, “
Negating interfacial impedance in garnet-based solid-state Li metal batteries
,”
Nat. Mater.
16
(
5
),
572
(
2017
).
8.
Y.
Seino
,
T.
Ota
,
K.
Takada
,
A.
Hayashi
, and
M.
Tatsumisago
, “
A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
,”
Energy. Environ. Sci.
7
(
2
),
627
(
2014
).
9.
H.
Yamane
,
M.
Shibata
,
Y.
Shimane
,
T.
Junke
,
Y.
Seino
,
S.
Adams
,
K.
Minami
,
A.
Hayashi
, and
M.
Tatsumisago
, “
Crystal structure of a superionic conductor, Li7P3S11
,”
Solid State Ionics
178
(
15–18
),
1163
(
2007
).
10.
N.
Kamaya
,
K.
Homma
,
Y.
Yamakawa
,
M.
Hirayama
,
R.
Kanno
,
M.
Yonemura
,
T.
Kamiyama
,
Y.
Kato
,
S.
Hama
,
K.
Kawamoto
 et al, “
A lithium superionic conductor
,”
Nat. Mater.
10
(
9
),
682
(
2011
).
11.
P.
Bron
,
S.
Johansson
,
K.
Zick
,
J. S.
auf der Gunne
,
S.
Dehnen
, and
B.
Roling
, “
Li10SnP2S12: An affordable lithium superionic conductor
,”
J. Am. Chem. Soc.
135
(
42
),
15694
(
2013
).
12.
S. P.
Ong
,
Y. F.
Mo
,
W. D.
Richards
,
L.
Miara
,
H. S.
Lee
, and
G.
Ceder
, “
Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors
,”
Energy. Environ. Sci.
6
(
1
),
148
(
2013
).
13.
P. G.
Bruce
and
A.
West
, “
The A–C conductivity of polycrystalline LISICON, Li2 + 2xZn1−xGeO4, and a model for intergranular constriction resistances
,”
J. Electrochem. Soc.
130
,
662
(
1983
).
14.
H.
Aono
,
E.
Sugimoto
,
Y.
Sadaoka
,
N.
Imanaka
, and
G.
Adachi
, “
Ionic-conductivity of solid electrolytes based on lithium titanium phosphate
,”
J. Electrochem. Soc.
137
(
4
),
1023
(
1990
).
15.
R.
Murugan
,
V.
Thangadurai
, and
W.
Weppner
, “
Fast lithium ion conduction in garnet-type Li7La3Zr2O12
,”
Angew. Chem., Int. Ed.
46
(
41
),
7778
(
2007
).
16.
X.
Yu
,
J.
Bates
,
G.
Jellison
, and
F.
Hart
, “
A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride
,”
J. Electrochem. Soc.
144
,
524
(
1997
).
17.
P.
Knauth
, “
Inorganic solid Li ion conductors: An overview
,”
Solid State Ionics
180
(
14–16
),
911
(
2009
).
18.
Y. T.
Li
,
J. T.
Han
,
C. A.
Wang
,
H.
Xie
, and
J. B.
Goodenough
, “
Optimizing Li+ conductivity in a garnet framework
,”
J. Mater. Chem.
22
(
30
),
15357
(
2012
).
19.
Y. F.
Mo
,
S. P.
Ong
, and
G.
Ceder
, “
First principles study of the Li10GeP2S12 lithium super ionic conductor material
,”
Chem. Mater.
24
(
1
),
15
(
2012
).
20.
F. D.
Han
,
Y. Z.
Zhu
,
X. F.
He
,
Y. F.
Mo
, and
C. S.
Wang
, “
Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes
,”
Adv. Energy. Mater.
6
(
8
),
1501590
(
2016
).
21.
X. F.
He
,
Q.
Bai
,
Y. S.
Liu
,
A. M.
Nolan
,
C.
Ling
, and
Y. F.
Mo
, “
Crystal structural framework of lithium super-ionic conductors
,”
Adv. Energy. Mater.
9
(
43
),
1902078
(
2019
).
22.
R.
Xiao
,
H.
Li
, and
L.
Chen
, “
Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations
,”
J. Materiomics
1
(
4
),
325
(
2015
).
23.
C. V.
Kannan
,
S.
Ganesamoorthy
,
D.
Rajesh
,
R.
Jayavel
, and
H.
Kimura
, “
Anisotropic properties of self-flux grown LiB3O5 single crystals
,”
Solid State Commun.
136
(
4
),
215
(
2005
).
24.
Y. N.
Xu
and
W. Y.
Ching
, “
Electronic-structure and optical-properties of LiB3O5
,”
Phys. Rev. B
41
(
8
),
5471
(
1990
).
25.
Y. N.
Xu
,
W. Y.
Ching
, and
R. H.
French
, “
Electronic-structure and interatomic bonding of crystalline β-BaB2O4 with Comparison to LiB3O5
,”
Phys. Rev. B
48
(
24
),
17695
(
1993
).
26.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
, “
A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
(
22
),
9901
(
2000
).
27.
Y.
Wang
,
W. D.
Richards
,
S. P.
Ong
,
L. J.
Miara
,
J. C.
Kim
,
Y. F.
Mo
, and
G.
Ceder
, “
Design principles for solid-state lithium superionic conductors
,”
Nat. Mater
14
(
10
),
1026
(
2015
).
28.
B.
Liu
,
Q. L.
Hu
,
T. Y.
Gao
,
P. G.
Liao
,
Y. F.
Wen
,
Z. H.
Lu
,
J.
Yang
,
S. Q.
Shi
, and
W. Q.
Zhang
, “
Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte
,”
J. Materiomics
8
(
1
),
59
(
2022
).
29.
H. K.
Tian
and
Y.
Qi
, “
Simulation of the effect of contact area loss in all-solid-state Li-ion batteries
,”
J. Electrochem. Soc.
164
(
11
),
E3512
(
2017
).
30.
T. H.
Wan
and
F.
Ciucci
, “
Electro-chemo-mechanical modeling of solid-state batteries
,”
Electrochim. Acta
331
,
135355
(
2020
).
31.
A.
Baktash
,
B.
Demir
,
Q.
Yuan
, and
D. J.
Searles
, “
Effect of defects and defect distribution on Li-diffusion and elastic properties of anti-perovskite Li3OCl solid electrolyte
,”
Energy Storage Mater.
41
,
614
(
2021
).
32.
M. S.
Wu
,
B.
Xu
,
X. L.
Lei
,
K.
Huang
, and
C. Y.
Ouyang
, “
Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: Insights from first principles calculations
,”
J. Mater. Chem. A
6
(
3
),
1150
(
2018
).
33.
Z.
Deng
,
Z. B.
Wang
,
I. H.
Chu
,
J.
Luo
, and
S. P.
Ong
, “
Elastic properties of alkali superionic conductor electrolytes from first principles calculations
,”
J. Electrochem. Soc. A
163
(
2
),
A67
(
2016
).
34.
Z. Q.
Wang
,
M. S.
Wu
,
G.
Liu
,
X. L.
Lei
,
B.
Xu
, and
C. Y.
Ouyang
, “
Elastic properties of new solid state electrolyte material Li10GeP2S12: A study from first-principles calculations
,”
Int. J. Electrochem. Sci.
9
(
2
),
562
(
2014
).
35.
A.
Kato
,
M.
Yamamoto
,
A.
Sakuda
,
A.
Hayashi
, and
M.
Tatsumisago
, “
Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries
,”
ACS Appl. Energy Mater.
1
(
3
),
1002
(
2018
).
36.
V. V.
Brazhkin
,
A. G.
Lyapin
, and
R. J.
Hemley
, “
Harder than diamond: Dreams and reality
,”
Philos. Mag. A
82
(
2
),
231
(
2002
).
37.
S.
Yu
,
R. D.
Schmidt
,
R.
Garcia-Mendez
,
E.
Herbert
,
N. J.
Dudney
,
J. B.
Wolfenstine
,
J.
Sakamoto
, and
D. J.
Siegel
, “
Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO)
,”
Chem. Mater.
28
(
1
),
197
(
2016
).
38.
J.
Feng
,
B.
Xiao
,
C. L.
Wan
,
Z. X.
Qu
,
Z. C.
Huang
,
J. C.
Chen
,
R.
Zhou
, and
W.
Pan
, “
Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore
,”
Acta Mater.
59
(
4
),
1742
(
2011
).
39.
Y.
Cui
,
M. M.
Mahmoud
,
M.
Rohde
,
C.
Ziebert
, and
H. J.
Seifert
, “
Thermal and ionic conductivity studies of lithium aluminum germanium phosphate solid-state electrolyte
,”
Solid State Ionics
289
,
125
(
2016
).
40.
R. J.
Xiao
,
H.
Li
, and
L. Q.
Chen
, “
High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory
,”
Sci. Rep.
5
,
14227
(
2015
).
41.
X.
Wang
,
R.
Xiao
,
H.
Li
, and
L.
Chen
, “
Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in beta-Li3PS4 electrolyte
,”
Phys. Chem. Chem. Phys.
18
(
31
),
21269
(
2016
).
42.
S. Q.
Shi
,
Y.
Qi
,
H.
Li
, and
L. G.
Hector
, “
Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries
,”
J. Phys. Chem. C
117
(
17
),
8579
(
2013
).
43.
Y. H.
Yang
,
Q.
Wu
,
Y. H.
Cui
,
Y. C.
Chen
,
S. Q.
Shi
,
R. Z.
Wang
, and
H.
Yan
, “
Elastic properties, defect thermodynamics, electrochemical window, phase stability, and Li+ mobility of Li3PS4: Insights from first-principles calculations
,”
ACS Appl. Mater. Interfaces
8
(
38
),
25229
(
2016
).
44.
N. D.
Lepley
,
N. A. W.
Holzwarth
, and
Y. J. A.
Du
, “
Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles
,”
Phys. Rev. B
88
(
10
),
104103
(
2013
).
45.
S.
Wenzel
,
S.
Randau
,
T.
Leichtweiß
,
D. A.
Weber
,
J.
Sann
,
W. G.
Zeier
, and
J.
Janek
, “
Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode
,”
Chem. Mater.
28
(
7
),
2400
(
2016
).
46.
M. S.
Wu
,
B.
Xu
,
W. W.
Luo
,
B. Z.
Sun
, and
C. Y.
Ouyang
,
Electrochim. Acta
334
,
135622
(
2020
).

Supplementary Material

You do not currently have access to this content.