Based on frequency-domain optical measurement using single nanoparticle plasmon sensors (NanoSPR), a versatile multiplex molecular affinity kinetics detection method is proposed. To improve the detection precision and throughput, a single-color imaging NanoSPR method (SI-NanoSPR) is used to obtain the light scattering signals of thousands of gold nanorod sensors over time under the configuration of a total internal reflection dark-field microscope. The frequency-domain power spectral density analysis of the fluctuation signal extracts the characteristic frequency fc, by which the molecular affinity kinetics manifest the identifiable measurand. By measuring the kinetics of two different aptameric affinity systems in the same microscope field of view, the obtained equilibrium dissociation constants (KD values) are demonstrated to be in agreement with previous studies, which were measured by traditional techniques. We expect that our NanoSPR method may pave the way for a deeper understanding of the physiological essence of biological affinity systems by accurately quantifying multiple affinity constants. The high-throughput biosensing potential is of great significance in further biomedical and pharmaceutical applications.

1.
C.
Sönnichsen
,
T.
Franzl
,
T.
Wilk
,
G.
von Plessen
,
J.
Feldmann
,
O.
Wilson
, and
P.
Mulvaney
,
Phys. Rev. Lett.
88
,
077402
(
2002
).
2.
R. E.
Armstrong
,
M.
Horáček
, and
P.
Zijlstra
,
Small
16
(52),
2003934
(
2020
).
3.
W.
Fritzsche
and
A.
Taton
,
Nanotechnology
14
,
R63
R73
(
2003
).
4.
E. C.
Cho
,
Q.
Zhang
, and
Y. N.
Xia
,
Nat. Nanotechnol.
6
,
385
391
(
2011
).
5.
B.
Pelaz
,
P.
del Pino
,
P.
Maffre
,
R.
Hartmann
,
M.
Gallego
,
S.
Rivera-Fernandez
,
J. M.
de la Fuente
,
G. U.
Nienhaus
, and
W. J.
Parak
,
ACS Nano
9
,
6996
7008
(
2015
).
6.
Z.
Zhang
,
H.
Wang
,
Z.
Chen
,
X.
Wang
,
J.
Choo
, and
L.
Chen
,
Biosens. Bioelectron.
114
,
52
65
(
2018
).
7.
S.
Sajed
,
F.
Arefi
,
M.
Kolahdouz
, and
M. A.
Sadeghi
,
Sens. Actuators, B
298
,
126942
(
2019
).
8.
S.
Shinohara
,
D.
Tanaka
,
K.
Okamoto
, and
K.
Tamada
,
Phys. Chem. Chem. Phys.
17
(
28
),
18606
18612
(
2015
).
9.
M.
Toma
and
K.
Tawa
,
Nanoscale Adv.
1
(
9
),
3699
3708
(
2019
).
10.
T.
Xu
and
Z.
Geng
,
Biosens. Bioelectron.
174
,
112850
(
2021
).
11.
C.
Lertvachirapaiboon
,
I.
Kiyokawa
,
A.
Baba
,
K.
Shinbo
, and
K.
Kato
,
Anal. Lett.
52
(
12
),
1939
1950
(
2019
).
12.
Y.
Bhattacharjee
,
D.
Chatterjee
, and
A.
Chakraborty
,
Sens. Actuators, B
255
,
210
216
(
2018
).
13.
A.
Yuan
,
X.
Wu
,
X.
Li
,
C.
Hao
,
C.
Xu
, and
H.
Kuang
,
Small
15
,
1901958
(
2019
).
14.
A. B.
Taylor
and
P.
Zijlstra
,
ACS Sens.
2
,
1103
1122
(
2017
).
15.
G.
Lei
and
Y.
He
,
Acta Phys. -Chim. Sin.
34
,
11
21
(
2018
).
16.
M. A.
Beuwer
,
M. W. J.
Prins
, and
P.
Zijlstra
,
Nano Lett.
15
,
3507
3511
(
2015
).
17.
S.
Celiksoy
,
W.
Ye
,
K.
Wandner
,
K.
Kaefer
, and
C.
Sönnichsen
,
Nano Lett.
21
(
5
),
2053
2058
(
2021
).
18.
C.
Rosman
,
J.
Prasad
,
A.
Neiser
,
A.
Henkel
,
J.
Edgar
, and
C.
Sönnichsen
,
Nano Lett.
13
,
3243
3247
(
2013
).
19.
R.
Ahijado-Guzmán
,
J.
Prasad
,
C.
Rosman
,
A.
Henkel
,
L.
Tome
,
D.
Schneider
,
G.
Rivas
, and
C.
Sönnichsen
,
Nano Lett.
14
,
5528
5532
(
2014
).
20.
W. X.
Ye
,
M.
Götz
,
S.
Celiksoy
,
L.
Tüting
,
C.
Ratzke
,
J.
Prasad
,
J.
Ricken
,
S. V.
Wegner
,
R.
Ahijado-Guzmán
,
T.
Hugel
, and
C.
Sönnichsen
,
Nano Lett.
18
,
6633
6637
(
2018
).
21.
W. X.
Ye
,
S.
Celiksoy
,
A.
Jakab
,
A.
Khmelinskaia
,
T.
Heermann
,
A.
Raso
,
S. V.
Wegner
,
G.
Rivas
,
P.
Schwille
,
R.
Ahijado-Guzmán
, and
C.
Sönnichsen
,
J. Am. Chem. Soc.
140
,
17901
17906
(
2018
).
22.
E. W. A.
Visser
,
M.
Horáček
, and
P.
Zijlstra
,
Nano Lett.
18
,
7927
7934
(
2018
).
23.
P.
Zijlstra
,
P. M. R.
Paulo
, and
M.
Orrit
,
Nat. Nanotechnol.
7
,
379
382
(
2012
).
24.
G. J.
Nusz
,
A. C.
Curry
,
S. M.
Marinakos
,
A.
Wax
, and
A.
Chilkoti
,
ACS Nano
3
,
795
806
(
2009
).
25.
E.
Lüthgens
and
A.
Janshoff
,
ChemPhysChem
6
,
444
448
(
2005
).
26.
J.
Mücksch
,
P.
Blumhardt
,
M. T.
Strauss
,
E. P.
Petrov
,
R.
Jungmann
, and
P.
Schwille
,
Nano Lett.
18
(
5
),
3185
3192
(
2018
).
27.
S. S.
Acimovic
,
H.
Sipova-Jungova
,
G.
Emilsson
,
L.
Shao
,
A. B.
Dahlin
,
M.
Kall
, and
T. J.
Antosiewicz
,
ACS Nano
12
,
9958
9965
(
2018
).
28.
S.
Celiksoy
,
W. X.
Ye
,
K.
Wandner
,
F.
Schlapp
,
K.
Kaefer
,
R.
Ahijado-Guzmán
, and
C.
Sönnichsen
,
J. Phys. Chem. Lett.
11
,
4554
4558
(
2020
).
29.
A. A.
Rowe
,
E. A.
Miller
, and
K. W.
Plaxco
,
Anal. Chem.
82
,
7090
7095
(
2010
).
30.
B. S.
Ferguson
,
D. A.
Hoggarth
,
D.
Maliniak
,
K.
Ploense
,
R. J.
White
,
N.
Woodward
,
K.
Hsieh
,
A. J.
Bonham
,
M.
Eisenstein
,
T. E.
Kippin
,
K. W.
Plaxco
, and
H. T.
Soh
,
Sci. Transl. Med.
5
(
213
),
213ra165
(
2013
).
31.
I.
Ament
,
J.
Prasad
,
A.
Henkel
,
S.
Schmachtel
, and
C.
Sönnichsen
,
Nano Lett.
12
(
2
),
1092
1095
(
2012
).
32.
C.
Wang
,
Y.
Li
,
Y.
Zhu
,
X.
Zhou
,
Q.
Lin
, and
M.
He
,
Adv. Funct. Mater.
26
(
42
),
7668
7678
(
2016
).
33.
K.
Käfer
,
K.
Krüger
,
F.
Schlapp
,
H.
Uzun
,
B.
Flietel
,
A.
Heimann
,
T.
Schröder
,
O.
Kempski
, and
C.
Sönnichsen
,
Nano Lett.
21
(
7
),
3325
3330
(
2021
).

Supplementary Material

You do not currently have access to this content.