Piezoresistive effect is crucial in a pressure sensor design. Therefore, a theoretical model that can accurately predict the gauge factor (GF) of graphene pressure sensors should be designed. In this study, the function relationship between the relative change in resistance and the strain was established using the Fermi velocity as the intermediate variable. A theoretical model that can be used for various substrates was established after considering the anisotropic properties of graphene and the principle of action of pressure sensors. Tests on the graphene pressure sensor device fabricated using semiconductor technology revealed that the GF [GF = (ΔR/R)/ε] of the device was 1.14, which was within the theoretical prediction range (1.06–2.08). Furthermore, the reported Poisson's ratio values of various substrates were substituted into the calculation formula of the GF. The results revealed that the predicted value was highly consistent with the experimental test results. This result indicated that the theoretical model suitable for predicting the GF of graphene pressure sensors with various substrates is universal. This theory can provide theoretical guidance for the development of high-sensitivity graphene pressure sensors.

1.
M.
Nag
,
J.
Singh
,
A.
Kumar
,
P. A.
Alvi
, and
K.
Singh
,
Microsyst. Technol.
25
(
10
),
3977
3982
(
2019
).
2.
X.
Lin
,
L.
Ying
,
Y.
Zhang
,
P.
Yang
,
X.
Cheng
,
J.
Qiu
, and
G.
Liu
,
Nano
14
(
10
),
1950130
(
2019
).
3.
Z.
Szczerba
,
P.
Szczerba
, and
K.
Szczerba
,
Energies
15
(
2
),
493
(
2022
).
4.
T.
Anh Vang
,
X.
Zhang
, and
B.
Zhu
,
IEEE Trans. Ind. Electron.
65
(
8
),
6487
6496
(
2018
).
5.
Q.
Meng
,
Y.
Lu
,
J.
Wang
,
D.
Chen
, and
J.
Chen
,
Micromachines
12
(
9
),
1095
(
2021
).
6.
S. S.
Kumar
and
B. D.
Pant
,
Microsyst. Technol.
20
(
12
),
2303
2303
(
2014
).
7.
M.
Cao
,
J.
Su
,
S.
Fan
,
H.
Qiu
,
D.
Su
, and
L.
Li
,
Chem. Eng. J.
406
,
126777
(
2021
).
8.
S.
Kidane
,
H.
Ishida
,
K.
Sawada
, and
K.
Takahashi
,
Nanoscale Adv.
2
(
4
),
1431
1436
(
2020
).
9.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
,
Solid State Commun.
146
(
9–10
),
351
355
(
2008
).
10.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
(
3
),
902
907
(
2008
).
11.
V. P.
Gusynin
,
S. G.
Sharapov
, and
J. P.
Carbotte
,
Phys. Rev. Lett.
96
(
25
),
256802
(
2006
).
12.
H.
Yao
,
X.
Guo
,
A.
Bao
,
H.
Mao
,
Y.
Ma
, and
X.
Li
,
Chin. Phys. B
31
(
3
),
038501
(
2022
).
13.
Q.
Wei
,
G.
Yang
, and
X.
Peng
,
Phys. Rev. Appl.
13
(
3
),
034065
(
2020
).
14.
Z.
Lu
and
M. L.
Dunn
,
J. Appl. Phys.
107
(
4
),
044301
(
2010
).
15.
J. S.
Bunch
,
S. S.
Verbridge
,
J. S.
Alden
,
A. M.
van der Zande
,
J. M.
Parpia
,
H. G.
Craighead
, and
P. L.
McEuen
,
Nano Lett.
8
(
8
),
2458
2462
(
2008
).
16.
A. D.
Smith
,
F.
Niklaus
,
A.
Paussa
,
S.
Schroeder
,
A. C.
Fischer
,
M.
Sterner
,
S.
Wagner
,
S.
Vaziri
,
F.
Forsberg
,
D.
Esseni
,
M.
Ostling
, and
M. C.
Lemme
,
ACS Nano
10
(
11
),
9879
9886
(
2016
).
17.
M.
Huang
,
T. A.
Pascal
,
H.
Kim
,
W. A.
Goddard
 III
, and
J. R.
Greer
,
Nano Lett.
11
(
3
),
1241
1246
(
2011
).
18.
M.
Nag
,
J.
Singh
,
A.
Kumar
, and
K.
Singh
,
Microsyst. Technol.
26
(
9
),
2971
2976
(
2020
).
19.
S.
Wittmann
,
C.
Glacer
,
S.
Wagner
,
S.
Pindl
, and
M. C.
Lemme
,
ACS Appl. Nano Mater.
2
(
8
),
5079
5085
(
2019
).
20.
S.-E.
Zhu
,
M. K.
Ghatkesar
,
C.
Zhang
, and
G. C. A. M.
Janssen
,
Appl. Phys. Lett.
102
(
16
),
161904
(
2013
).
21.
Y. J.
Park
,
S.-K.
Lee
,
M.-S.
Kim
,
H.
Kim
, and
J.-H.
Ahn
,
ACS Nano
8
(
8
),
7655
7662
(
2014
).
22.
S.
Riyajuddin
,
S.
Kumar
,
S. P.
Gaur
,
A.
Sud
,
T.
Maruyama
,
M. E.
Ali
, and
K.
Ghosh
,
Nanotechnology
31
(
29
),
295501
(
2020
).
23.
M.
Oliva-Leyva
and
G. G.
Naumis
,
Phys. Lett. A
379
(
40–41
),
2645
2651
(
2015
).
24.
V. M.
Pereira
,
A. H.
Castro Neto
, and
N. M. R.
Peres
,
Phys. Rev. B
80
(
4
),
045401
(
2009
).
25.
X. J.
Ge
,
K. L.
Yao
, and
J. T.
Lu
,
Phys. Rev. B
94
,
165433
(
2016
).
26.
W.-T.
Park
,
R. K.
Kotlanka
,
L.
Lou
,
M.
Hamidullah
, and
C.
Lee
,
Microsyst. Technol.
19
(
7
),
1005
1015
(
2013
).
27.
S.
Chun
,
Y.
Choi
, and
W.
Park
,
Carbon
116
,
753
759
(
2017
).
28.
J.
Wang
,
Z.
Zhu
,
Y.
Qi
, and
M.
Li
,
Nanomaterials
12
(
12
),
2101
(
2022
).
29.
A.
Das
,
B.
Chakraborty
, and
A. K.
Sood
,
Bull. Mater. Sci.
31
(
3
),
579
584
(
2008
).
30.
M.
Lebioda
,
R.
Pawlak
,
W.
Szymanski
,
W.
Kaczorowski
, and
A.
Jeziorna
,
Sensors
20
(
7
),
2134
(
2020
).
31.
Y.
Yoo
,
Y.-J.
Kim
,
D.-N.
Kim
, and
J.-H.
Lee
,
Phys. Chem. Chem. Phys.
18
(
31
),
21949
21953
(
2016
).
32.
G.
Zhang
,
Y.
Zhao
, and
J.
Sun
,
Rev. Sci. Instrum.
93
(
1
),
015009
(
2022
).
33.
J.
Ding
,
S.
Fu
,
R.
Zhang
,
E.
Boon
,
W.
Lee
,
F. T.
Fisher
, and
E.-H.
Yang
,
Nanotechnology
28
(
46
),
465302
(
2017
).

Supplementary Material

You do not currently have access to this content.