In this study, we report a simple route to the low-temperature crystallization of solution-processed indium oxide thin films by introducing ammonium nitrate in the sol–gel metal oxide precursor solution as photoactivable additive and applying deep ultraviolet (DUV) irradiation onto the as-spun oxide films in an inert atmosphere. Thermal and structural analyses revealed that the initial temperatures for condensation and crystallization were reduced down to 130 and 200 °C, respectively, by the in situ generation of reactive chemical species enabled by DUV-assisted nitrate photolysis. Furthermore, transmission electron microscopy confirmed that the degree of indium oxide film crystallinity was gradually enhanced as the amount of nitrate in the precursor solution was increased. Finally, electrical characterizations showed that carrier mobility, threshold voltage, subthreshold swing, and threshold voltage shift under the positive bias stress of sol–gel indium oxide thin-film transistors were improved from 0.21 to 5.03 cm2/V s, from 4.18 to 1.64 V, from 1.33 to 0.72 V/dec, and from 6.44 to 4.04 V, respectively, by combining ammonium nitrate and DUV photoactivation.

1.
C.
Wang
,
D.
Hwang
,
Z.
Yu
,
K.
Takei
,
J.
Park
,
T.
Chen
,
B.
Ma
, and
A.
Javey
,
Nat. Mater.
12
,
899
(
2013
).
2.
M. G.
Mohammed
and
R.
Kramer
,
Adv. Mater.
29
,
1604965
(
2017
).
3.
S.
Choi
,
H.
Lee
,
R.
Ghaffari
,
T.
Hyeon
, and
D.-H.
Kim
,
Adv. Mater.
28
,
4203
(
2016
).
4.
A.
Facchetti
,
C.-C.
Hsiao
,
E.
Huitema
, and
P.
Inagaki
,
Inf. Disp.
32
,
6
(
2016
).
5.
T.
Lei
,
M.
Guan
,
J.
Liu
,
H.-C.
Lin
,
R.
Pfattner
,
L.
Shaw
,
A. F.
McGuire
,
T.-C.
Huang
,
L.
Shao
,
K.-T.
Cheng
,
J. B.-H.
Tok
, and
Z.
Bao
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
5107
(
2017
).
6.
E.
Yarali
,
C.
Koutsiaki
,
H.
Faber
,
K.
Tetzner
,
E.
Yengel
,
P.
Patsalas
,
N.
Kalfagiannis
,
D. C.
Koutsogeorgis
, and
T. D.
Anthopoulos
,
Adv. Funct. Mater.
30
,
1906022
(
2020
).
7.
J.-W.
Jo
,
S.-H.
Kang
,
J. S.
Heo
,
Y.-H.
Kim
, and
S. K.
Park
,
Chem. Eur. J.
26
,
9126
(
2020
).
8.
J. W.
Park
,
B. H.
Kang
, and
H. J.
Kim
,
Adv. Funct. Mater.
30
,
1904632
(
2020
).
9.
S.
Yamazaki
and
T.
Matsuo
,
SID Symp. Dig. Tech. Pap.
46
,
673
(
2015
).
10.
K.
Park
,
H. W.
Park
,
H. S.
Shin
,
J.
Bae
,
K. S.
Park
,
I.
Kang
,
K. B.
Chung
, and
J. Y.
Kwon
,
IEEE Trans. Electron Devices
62
,
2900
(
2015
).
11.
H.
Kim
,
D.
Choi
,
S.
Park
,
K.
Park
,
H.-W.
Park
,
K.-B.
Chung
, and
J.-Y.
Kwon
,
Appl. Phys. Lett.
110
,
232104
(
2017
).
12.
W.
Xu
,
H.
Li
,
J.-B.
Xu
, and
L.
Wang
,
ACS Appl. Mater. Interfaces
10
,
25878
(
2018
).
13.
M.
Miyakawa
,
M.
Nakata
,
H.
Tsuji
, and
Y.
Fujisaki
,
Sci. Rep.
8
,
12825
(
2018
).
14.
W. J.
Scheideler
,
R.
Kumar
,
A. R.
Zeumault
, and
V.
Subramanian
,
Adv. Funct. Mater.
27
,
1606062
(
2017
).
15.
K. K.
Banger
,
Y.
Yamashita
,
K.
Mori
,
R. L.
Peterson
,
T.
Leedham
,
J.
Rickard
, and
H.
Sirringhaus
,
Nat. Mater.
10
,
45
(
2011
).
16.
E. A.
Cochran
,
D.-H.
Park
,
M. G.
Kast
,
L. J.
Enman
,
C. K.
Perkins
,
R. H.
Mansergh
,
D. A.
Keszler
,
D. W.
Johnson
, and
S. W.
Boettcher
,
Chem. Mater.
29
,
9480
(
2017
).
17.
Y.-H.
Kim
,
J.-S.
Heo
,
T.-H.
Kim
,
S.
Park
,
M.-H.
Yoon
,
J.
Kim
,
M. S.
Oh
,
G.-R.
Yi
,
Y.-Y.
Noh
, and
S. K.
Park
,
Nature
489
,
128
(
2012
).
18.
S.
Dellis
,
I.
Isakov
,
N.
Kalfagiannis
,
K.
Tetzner
,
T. D.
Anthopoulos
, and
D. C.
Koutsogeorgis
,
J. Mater. Chem. C
5
,
3673
(
2017
).
19.
J. S.
Heo
,
J.-W.
Jo
,
J.
Kang
,
C.-Y.
Jeong
,
H. Y.
Jeong
,
S. K.
Kim
,
K.
Kim
,
H.-I.
Kwon
,
J.
Kim
,
Y.-H.
Kim
,
M.-G.
Kim
, and
S. K.
Park
,
ACS Appl. Mater. Interfaces
8
,
10403
(
2016
).
20.
W.
Huang
,
X.
Yu
,
L.
Zeng
,
B.
Wang
,
A.
Takai
,
G. D.
Carlo
,
M. J.
Bedzyk
,
T. J.
Marks
, and
A.
Facchetti
,
ACS Appl. Mater. Interfaces
13
,
3445
(
2021
).
21.
W.
Kim
,
W.-J.
Lee
,
T.
Kwak
,
S.
Baek
,
S.-H.
Lee
, and
S.
Park
,
Adv. Mater. Interfaces
9
,
2200032
(
2022
).
22.
W.-G.
Kim
,
Y. J.
Tak
,
H.
Yoo
,
H. T.
Kim
,
J. W.
Park
,
D. H.
Choi
, and
H. J.
Kim
,
ACS Appl. Mater. Interfaces
13
,
44531
(
2021
).
23.
S.
Park
,
K.-H.
Kim
,
J.-W.
Jo
,
S.
Sung
,
K.-T.
Kim
,
W.-J.
Lee
,
J.
Kim
,
H. J.
Kim
,
G.-R.
Yi
,
Y.-H.
Kim
,
M.-H.
Yoon
, and
S. K.
Park
,
Adv. Funct. Mater.
25
,
2807
(
2015
).
24.
R. A.
John
,
N. A.
Chien
,
S.
Shukla
,
N.
Tiwari
,
C.
Shi
,
N. G.
Ing
, and
N.
Mathews
,
Chem. Mater.
28
,
8305
(
2016
).
25.
S. K.
Shaikh
,
S. I.
Inamdar
,
V. V.
Ganbavle
, and
K. Y.
Rajpure
,
J. Alloys Compd.
664
,
242
(
2016
).
26.
S.
Goldstein
and
J.
Rabani
,
J. Am. Chem. Soc.
129
,
10597
(
2007
).
27.
N. K.
Scharko
,
A. E.
Berke
, and
J. D.
Raff
,
Environ. Sci. Technol.
48
,
11991
(
2014
).
28.
J.
Mack
and
J. R.
Bolton
,
J. Photochem. Photobiol. Chem.
128
,
1
(
1999
).
29.
C. E.
Richeson
,
P.
Mulder
,
V. W.
Bowry
, and
K. U.
Ingold
,
J. Am. Chem. Soc.
120
,
7211
(
1998
).
30.
M.
Epifani
,
E.
Melissano
,
G.
Pace
, and
M.
Schioppa
,
J. Eur. Ceram. Soc.
27
,
115
(
2007
).
31.
D.
Salgueiro
,
A.
Kiazadeh
,
R.
Branquinho
,
L.
Santos
,
P.
Barquinha
,
R.
Martins
, and
E.
Fortunato
,
J. Phys. D: Appl. Phys.
50
,
065106
(
2017
).
32.
H. P.
Klug
and
L. E.
Alexander
,
X-Ray Diffraction Procedures
, 2nd ed. (
Wiley
,
1974
), Chap. 9.
33.
J. I.
Langford
and
A. J. C.
Wilson
,
J. Appl. Crystallogr.
11
,
102
(
1978
).
34.
P.
Kościelniak
,
A.
Grzeszczak
, and
J.
Szuber
,
Cryst. Res. Technol.
50
,
884
(
2015
).
35.
L. B.
Hoch
,
T. E.
Wood
,
P. G.
O'Brien
,
K.
Liao
,
L. M.
Reyes
,
C. A.
Mims
, and
G. A.
Ozin
,
Adv. Sci.
1
,
1400013
(
2014
).

Supplementary Material

You do not currently have access to this content.