Semiconductor superlattices (SLs) have found widespread applications in electronic industries. In this work, a short-period SL structure composed of CdO and MgO layers was grown using a plasma-assisted molecular beam epitaxy technique. The optical property of the SLs was investigated by absorption measurement at room temperature. The ambient-pressure direct bandgap was found to be 2.76 eV. The pressure dependence of fundamental bandgap has been studied using a diamond anvil cell technique. It has been found that the band-to-band transition shifts toward higher energy with an applied pressure. The bandgap of SLs was varied from 2.76 to 2.87 eV with applied pressure varied from 0 to 5.9 GPa. The pressure coefficient for the direct bandgap of SLs was found to be 26 meV/GPa. The obtained experimental result was supported by theoretical results obtained using density functional theory calculations. The volume deformation potential was estimated using the empirical rule. We believe that our findings may provide valuable insight for a better understanding of {CdO/MgO} SLs toward their future applications in optoelectronics.

1.
Z.
Yang
,
C.
Ko
, and
S.
Ramanathan
,
Annu. Rev. Mater. Res.
41
,
337
(
2011
).
2.
J.
Falson
,
Y.
Kozuka
,
M.
Uchida
,
J. H.
Smet
,
T. H.
Arima
,
A.
Tsukazaki
, and
M.
Kawasaki
,
Sci. Rep.
6
,
26598
(
2016
).
3.
Y. Y.
Kuznetsova
,
F.
Fedichkin
,
P.
Andreakou
,
E. V.
Calman
,
L. V.
Butov
,
P.
Lefebvre
,
T.
Bretagnon
,
T.
Guillet
,
M.
Vladimirova
,
C.
Morhain
, and
J.-M.
Chauveau
,
Opt. Lett.
40
(
15
),
3667
3670
(
2015
).
4.
H.
Tampo
,
H.
Shibata
,
K.
Matsubara
,
A.
Yamada
,
P.
Fons
,
S.
Niki
,
M.
Yamagata
, and
H.
Kanie
,
Appl. Phys. Lett.
89
,
132113
(
2006
).
5.
E.
Przezdziecka
,
J. M.
Sajkowski
,
M.
Stachowicz
, and
A.
Kozanecki
,
Thin Solid Films
643
,
31
(
2017
).
6.
J. A.
Davis
and
C.
Jagadish
,
Laser Photonics Rev.
3
,
85
(
2009
).
7.
X.
Zhou
,
D.
Jiang
,
M.
Zhao
,
N.
Wang
,
Y.
Duan
,
W.
Wang
,
M.
Li
,
Q.
Li
,
C.
Shan
, and
J.
Sun
,
J. Alloys Compd.
820
,
153416
(
2020
).
8.
I.
Gorczyca
,
T.
Suski
,
P.
Strak
,
G.
Staszczak
, and
N. E.
Christensen
,
Sci. Rep.
7
,
16055
(
2017
).
9.
G.
Chen
,
K. M.
Yu
,
L. A.
Reichertz
, and
W.
Walukiewicz
,
Appl. Phys. Lett.
103
,
041902
(
2013
).
10.
L. M.
Guia
,
V.
Sallet
,
C.
Sartel
,
M. C.
Martínez-Tomás
, and
V.
Muñoz-Sanjosé
,
Phys. Status Solidi C
13
,
452
(
2016
).
11.
L. M.
Guia
,
V.
Sallet
,
S.
Hassani
,
M. C.
Martínez-Tomás
, and
V.
Muñoz-Sanjosé
,
Cryst. Growth Des.
17
,
6303
(
2017
).
12.
A.
Adhikari
,
A.
Lysak
,
A.
Wierzbicka
,
P.
Sybilski
,
A.
Reszka
,
B. S.
Witkowski
, and
E.
Przezdziecka
,
Mater. Sci. Semicond. Process.
144
,
106608
(
2022
).
13.
E.
Przezdziecka
,
A.
Wierzbicka
,
P.
Dłuzewski
,
I.
Sankowska
,
P.
Sybilski
,
K.
Morawiec
,
M. A.
Pietrzyk
, and
A.
Kozanecki
,
Cryst. Growth Des.
20
,
5466
(
2020
).
14.
E.
Przeździecka
,
P.
Strąk
,
A.
Wierzbicka
,
A.
Adhikari
,
A.
Lysak
,
P.
Sybilski
,
J. M.
Sajkowski
,
A.
Seweryn
, and
A.
Kozanecki
,
Nanoscale Res. Lett.
16
,
59
(
2021
).
15.
C. E.
Weir
,
E. R.
Lippincott
,
A.
Van Valkenburg
, and
E. N.
Bunting
,
J. Res. Natl. Bur. Stand., Sect. A
63A
,
55
(
1959
).
16.
T.
Kobayashi
,
Rev. Sci. Instrum.
56
,
255
(
1985
).
17.
A.
Jayaraman
,
Rev. Sci. Instrum.
57
,
1013
(
1986
).
18.
G.
Shen
and
H. K.
Mao
,
Rep. Prog. Phys.
80
,
016101
(
2017
).
19.
A.
Jayaraman
,
Rev. Mod. Phys.
55
,
65
(
1983
).
20.
I.
Gorczyca
,
T.
Suski
,
N. E.
Christensen
, and
A.
Svane
,
Appl. Phys. Lett.
101
,
092104
(
2012
).
21.
H.
Akamaru
,
A.
Onodera
,
T.
Endo
, and
O.
Mishima
,
J. Phys. Chem. Solids
63
,
887
(
2002
).
22.
P.
Perlin
,
L.
Mattos
,
N. A.
Shapiro
,
J.
Kruger
,
W. S.
Wong
,
T.
Sands
,
N. W.
Cheung
, and
E. R.
Weber
,
J. Appl. Phys.
85
,
2385
(
1999
).
23.
S. X.
Li
,
J.
Wu
,
E. E.
Haller
,
W.
Walukiewicz
,
W.
Shan
,
H.
Lu
, and
W. J.
Schaff
,
Appl. Phys. Lett.
83
,
4963
(
2003
).
24.
A.
Kaminska
,
A.
Duzynska
,
M.
Nowakowska
,
A.
Suchocki
,
T. A.
Wassner
,
B.
Laumer
, and
M.
Eickhoff
,
J. Alloys Compd.
672
,
125
(
2016
).
25.
A.
Duzynska
,
R.
Hrubiak
,
V.
Drozd
,
H.
Teisseyre
,
W.
Paszkowicz
,
A.
Reszka
,
A.
Kaminska
,
S.
Saxena
,
J. D.
Fidelus
,
J.
Grabis
,
C. J.
Monty
, and
A.
Suchocki
,
High Pressure Res.
32
,
354
(
2012
).
26.
I.
Gorczyca
,
T.
Suski
,
N. E.
Christensen
, and
A.
Svane
,
Phys. Rev. B
83
,
153301
(
2011
).
27.
Y.
Duan
,
L.
Qin
,
L.
Shi
, and
G.
Tang
,
Comput. Mater. Sci.
101
,
56
(
2015
).
28.
A.
Franceschetti
and
A.
Zunger
,
Appl. Phys. Lett.
65
,
2990
(
1994
).
29.
G.
Staszczak
,
I.
Gorczyca
,
T.
Suski
,
X. Q.
Wang
,
N. E.
Christensen
,
A.
Svane
,
E.
Dimakis
, and
T. D.
Moustakas
,
J. Appl. Phys.
113
,
123101
(
2013
).
30.
I.
Gorczyca
,
K.
Skrobas
,
T.
Suski
,
N. E.
Christensen
, and
A.
Svane
,
J. Appl. Phys.
114
,
223102
(
2013
).
31.
B.
Rockwell
,
H. R.
Chandrasekhar
,
M.
Chandrasekhar
,
F. H.
Pollak
,
H.
Shen
,
L. L.
Chang
,
W. I.
Wang
, and
L.
Esaki
,
Surf. Sci.
228
,
322
(
1990
).
32.
A. D.
Prins
,
B.
Gil
,
D. J.
Dunstan
, and
J. P.
Faurie
,
High Pressure Res.
3
,
63
(
1990
).
33.
S. H.
Wei
and
A.
Zunger
,
Phys. Rev. B
60
,
5404
(
1999
).
34.
W.
Shan
,
W.
Walukiewicz
,
J. W.
Ager
,
K. M.
Yu
,
J.
Wu
, and
E. E.
Haller
,
Appl. Phys. Lett.
84
,
67
(
2004
).
35.
L.
Dmowski
and
J. C.
Portal
,
Semicond. Sci. Technol.
4
,
211
(
1989
).
37.
P. G.
Moses
and
C. G.
Van De Walle
,
Appl. Phys. Lett.
96
,
021908
(
2010
).
38.
L. G.
Ferreira
,
M.
Marques
, and
L. K.
Teles
,
Phys. Rev. B
78
,
125116
(
2008
).
39.
U.
Schönberger
and
F.
Aryasetiawan
,
Phys. Rev. B
52
,
8788
(
1995
).
40.
D.
Carballeda-Galicia
,
R.
Castanedo-Pérez
,
O.
Jiménez-Sandoval
,
S.
Jiménez-Sandoval
,
G.
Torres-Delgado
, and
C.
Zúñiga-Romero
,
Thin Solid Films
371
,
105
(
2000
).
41.
Z.
Zhao
,
D. L.
Morel
, and
C. S.
Ferekides
,
Thin Solid Films
413
,
203
(
2002
).
42.
Q.
Yan
,
P.
Rinke
,
M.
Winkelnkemper
,
A.
Qteish
,
D.
Bimberg
,
M.
Scheffler
, and
C. G.
Van De Walle
,
Appl. Phys. Lett.
101
,
152105
(
2012
).
43.
R. A.
Graham
,
J. Geophys. Res.
76
,
4908
, (
1971
).
44.
B. D.
Sahoo
,
K. D.
Joshi
, and
S. C.
Gupta
,
J. Appl. Phys.
112
,
093523
(
2012
).
45.
A. R.
Oganov
and
P. I.
Dorogokupets
,
Phys. Rev. B
67
,
224110
(
2003
).
46.
J. E.
Jaffe
,
J. A.
Snyder
,
Z.
Lin
, and
A. C.
Hess
,
Phys. Rev. B
62
,
1660
(
2000
).
47.
J.
Huso
,
J. L.
Morrison
,
H.
Hoeck
,
X. B.
Chen
,
L.
Bergman
,
S. J.
Jokela
,
M. D.
McCluskey
, and
T.
Zheleva
,
Appl. Phys. Lett.
89
,
171909
(
2006
).
48.
D.
Chen
and
N. M.
Ravindra
,
J. Mater. Sci.
47
,
5735
(
2012
).
49.
Y. Z.
Zhu
,
G. D.
Chen
,
H.
Ye
,
A.
Walsh
,
C. Y.
Moon
, and
S. H.
Wei
,
Phys. Rev. B.
77
,
245209
(
2008
).
50.
J.
Yu
,
M.
Zhang
,
Z.
Zhang
,
S.
Wang
, and
Y.
Wu
,
RSC Adv.
9
,
8507
(
2019
).
51.
J. C.
Boettger
,
Int. J. Quantum Chem.
107
,
2988
(
2007
).
52.
A.
Gueddim
,
N.
Bouarissa
, and
A.
Villesuzanne
,
Optik
124
,
2670
(
2013
).
53.
F. D.
Murnaghan
,
Proc. Natl. Acad. Sci. U. S. A.
30
,
244
(
1944
).
54.
R. J.
Guerrero-Moreno
and
N.
Takeuchi
,
Phys. Rev. B
66
,
205205
(
2002
).
55.
H.
Baltache
,
R.
Khenata
,
M.
Sahnoun
,
M.
Driz
,
B.
Abbar
, and
B.
Bouhafs
,
Physica B
344
,
334
(
2004
).
56.
M.
Causà
,
R.
Dovesi
,
C.
Pisani
, and
C.
Roetti
,
Phys. Rev. B
33
,
1308
(
1986
).

Supplementary Material

You do not currently have access to this content.