In this work, a high-performance flexible radio frequency transistor using an ultrathin indium tin oxide film channel based on a solution-cast thin polyimide substrate has been demonstrated. The 60 nm short channel transistor shows a record high cut-off frequency of 5 GHz and a maximum oscillation frequency of 11 GHz with high uniformity among 40 devices. The radio frequency characteristics under various bending conditions have been systematically studied under a bending radius of 5 mm for 10 000 times and a bending radius of 1 mm for 1000 times, showing excellent stability with only 20% decrease in the cut-off frequency. Furthermore, a flexible frequency mixer has also been demonstrated at 2.4 GHz with decent conversion gains.

1.
H.
Zhang
,
Y.
Lan
,
S.
Qiu
,
S.
Min
,
H.
Jang
,
J.
Park
,
S.
Gong
, and
Z.
Ma
,
Adv. Mater. Technol.
6
,
2000759
(
2021
).
2.
Y.
Lan
,
Y.
Yang
,
Y.
Wang
,
Y.
Wu
,
Z.
Cao
,
S.
Huo
,
L.
Jiang
,
Y.
Guo
,
Y.
Wu
,
B.
Yan
,
R.
Xu
,
Y.
Chen
,
Y.
Li
,
S.
Lal
,
Z.
Ma
, and
Y.
Xu
,
ACS Appl. Mater. Interfaces
12
,
26145
(
2020
).
3.
X.
Zhang
,
J.
Grajal
,
J. L.
Vazquez-Roy
,
U.
Radhakrishna
,
X.
Wang
,
W.
Chern
,
L.
Zhou
,
Y.
Lin
,
P.-C.
Shen
,
X.
Ji
,
X.
Ling
,
A.
Zubair
,
Y.
Zhang
,
H.
Wang
,
M.
Dubey
,
J.
Kong
,
M.
Dresselhaus
, and
T.
Palacios
,
Nature
566
,
368
(
2019
).
4.
J.-H.
Seo
,
Z.
Ma
, and
W.
Zhou
, in
IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)
(
IEEE
,
2014
), p.
107
.
5.
J.
Biggs
,
J.
Myers
,
J.
Kufel
,
E.
Ozer
,
S.
Craske
,
A.
Sou
,
C.
Ramsdale
,
K.
Williamson
,
R.
Price
, and
S.
White
,
Nature
595
,
532
(
2021
).
6.
E.
Ozer
,
J.
Kufel
,
J.
Myers
,
J.
Biggs
,
G.
Brown
,
A.
Rana
,
A.
Sou
,
C.
Ramsdale
, and
S.
White
,
Nat. Electron.
3
,
419
(
2020
).
7.
R.
Yao
,
Z.
Zheng
,
M.
Xiong
,
X.
Zhang
,
X.
Li
,
H.
Ning
,
Z.
Fang
,
W.
Xie
,
X.
Lu
, and
J.
Peng
,
Appl. Phys. Lett.
112
,
103503
(
2018
).
8.
H.-R.
Kim
,
M.
Furuta
, and
S.-M.
Yoon
,
ACS Appl. Electron. Mater.
1
,
2363
(
2019
).
9.
C.
Fernandes
,
A.
Santa
,
Â.
Santos
,
P.
Bahubalindruni
,
J.
Deuermeier
,
R.
Martins
,
E.
Fortunato
, and
P.
Barquinha
,
Adv. Electron. Mater.
4
,
1800032
(
2018
).
10.
M.
Wang
,
X.
Li
,
X.
Xiong
,
J.
Song
,
C.
Gu
,
D.
Zhan
,
Q.
Hu
,
S.
Li
, and
Y.
Wu
,
IEEE Electron Device Lett.
40
,
419
(
2019
).
11.
K.-C.
Ok
,
S.-H. K.
Park
,
C.-S.
Hwang
,
H.
Kim
,
H. S.
Shin
,
J.
Bae
, and
J.-S.
Park
,
Appl. Phys. Lett.
104
,
063508
(
2014
).
12.
H. U.
Li
and
T. N.
Jackson
,
IEEE Electron Device Lett.
36
,
35
(
2015
).
13.
J.
Sheng
,
H.-J.
Lee
,
S.
Oh
, and
J.-S.
Park
,
ACS Appl. Mater. Interfaces
8
,
33821
(
2016
).
14.
L.
Petti
,
N.
Munzenrieder
,
C.
Vogt
,
H.
Faber
,
L.
Buthe
,
G.
Cantarella
,
F.
Bottacchi
,
T. D.
Anthopoulos
, and
G.
Troster
,
Appl. Phys. Lett.
3
,
021303
(
2016
).
15.
K.
Myny
,
Nat. Electron.
1
,
30
(
2018
).
16.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
(
2004
).
17.
N.
Münzenrieder
,
G.
Cantarella
, and
L.
Petti
,
ECS Trans.
90
,
55
(
2019
).
18.
M.
Benwadih
,
R.
Coppard
,
K.
Bonrad
,
A.
Klyszcz
, and
D.
Vuillaume
,
ACS Appl. Mater. Interfaces
8
,
34513
(
2016
).
19.
J.
Zhang
,
Y.
Li
,
B.
Zhang
,
H.
Wang
,
Q.
Xin
, and
A.
Song
,
Nat. Commun.
6
,
7561
(
2015
).
20.
Y. H.
Jung
,
J.-H.
Seo
,
H.
Zhang
,
J.
Lee
,
S. J.
Cho
,
T.-H.
Chang
, and
Z.
Ma
,
Proc SPIE
10194
,
101941C
(
2017
).
21.
C.
Wang
,
J.-C.
Chien
,
H.
Fang
,
K.
Takei
, and
A.
Javey
,
Nano Lett.
12
,
4140
(
2012
).
22.
N. R.
Glavin
,
K. D.
Chabak
,
E. R.
Heller
,
E. A.
Moore
,
T. A.
Prusnick
,
B.
Maruyama
,
D. E.
Walker
, Jr.
,
D. L.
Dorsey
,
Q.
Paduano
, and
M.
Snure
,
Adv. Mater.
29
,
1701838
(
2017
).
23.
K. S.
Nagaraj
,
K.
Sangeeth
, and
G. M.
Hegde
,
Proc SPIE
9234
,
923415
(
2014
).
24.
K.
Scholten
and
E.
Meng
, “
Electron-beam lithography for polymer bioMEMS with submicron features
,”
Microsyst. Nanoeng.
2
,
16053
(
2016
).
25.
M.
Wang
,
M.
Tian
,
Z.
Zhang
,
S.
Li
,
R.
Wang
,
C.
Gu
,
X.
Shan
,
X.
Xiong
,
X.
Li
,
R.
Huang
, and
Y.
Wu
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
), p.
8.2.1
.
26.
H.
Gleskova
,
S.
Wagner
,
W.
Soboyejo
, and
Z.
Suo
,
J. Appl. Phys.
92
,
6224
(
2002
).
27.
J.-S.
Park
,
T.-W.
Kim
,
D.
Stryakhilev
,
J.-S.
Lee
,
S.-G.
An
,
Y.-S.
Pyo
,
D.-B.
Lee
,
Y. G.
Mo
,
D.-U.
Jin
, and
H. K.
Chung
,
Appl. Phys. Lett.
95
,
013503
(
2009
).
28.
S.
Li
,
M.
Tian
,
Q.
Gao
,
M.
Wang
,
T.
Li
,
Q.
Hu
,
X.
Li
, and
Y.
Wu
,
Nat. Mater.
18
,
1091
(
2019
).
29.
N.
Münzenrieder
,
I.
Shorubalko
,
L.
Petti
,
G.
Cantarella
,
B.
Shkodra
,
T.
Meister
,
K.
Ishida
,
C.
Carta
,
F.
Ellinger
, and
G.
Tröster
,
Flexible Printed Electron.
5
,
015007
(
2020
).
30.
L.
Petti
,
E.
Greco
,
G.
Cantarella
,
N.
Münzenrieder
,
C.
Vogt
, and
G.
Tröster
,
IEEE Trans. Electron Devices
65
,
3796
(
2018
).
31.
L.
Petti
,
A.
Frutiger
,
N.
Münzenrieder
,
G. A.
Salvatore
,
L.
Büthe
,
C.
Vogt
,
G.
Cantarella
, and
G.
Tröster
,
IEEE Electron Device Lett.
36
,
475
(
2015
).
32.
X.
Wei
,
S.
Kumagai
,
K.
Tsuzuku
,
A.
Yamamura
,
T.
Makita
,
M.
Sasaki
,
S.
Watanabe
, and
J.
Takeya
,
Flexible Printed Electron.
5
,
015003
(
2020
).
33.
N.
Münzenrieder
,
P.
Voser
,
L.
Petti
,
C.
Zysset
,
L.
Büthe
,
C.
Vogt
,
G. A.
Salvatore
, and
G.
Tröster
,
IEEE Electron Device Lett.
35
,
69
(
2014
).
You do not currently have access to this content.