We present a method to characterize the noise in ground-based gravitational-wave observatories such as the Laser Gravitational-Wave Observatory (LIGO). This method uses linear regression algorithms such as the least absolute shrinkage and selection operator to identify noise sources and analyzes the detector output vs noise witness sensors to quantify the coupling of such noise. Our method can be implemented with currently available resources at LIGO, which avoids extra coding or direct experimentation at the LIGO sites. We present two examples to validate and estimate the coupling of elevated ground motion at frequencies below 10 Hz with noise in the detector output.

1.
J.
Aasi
,
B. P.
Abbott
,
R.
Abbott
 et al., “
Advanced LIGO
,”
Classical Quantum Gravity
32
,
074001
(
2015
).
2.
F.
Acernese
,
M.
Agathos
,
K.
Agatsuma
 et al., “
Advanced Virgo: Second-generation interferometric gravitational wave detector
,”
Classical Quantum Gravity
32
,
024001
(
2015
).
3.
T.
Akutsu
,
M.
Ando
,
K.
Arai
 et al., “
KAGRA: 2.5 generation interferometric gravitational wave detector
,”
Nat. Astron.
3
,
35
40
(
2019
).
4.
D.
Davis
,
J. S.
Areeda
,
B. K.
Berger
 et al., “
LIGO detector characterization in the second and third observing runs
,”
Classical Quantum Gravity
38
,
135014
(
2021
).
5.
T.
Accadia
,
F.
Acernese
,
F.
Antonucci
 et al., “
Noise from scattered light in Virgo's second science run data
,”
Classical Quantum Gravity
27
,
194011
(
2010
).
6.
D.
Davis
and
M.
Walker
, “
Detector characterization and mitigation of noise in ground-based gravitational-wave interferometers
,”
Galaxies
10
,
12
(
2022
).
7.
S.
Bianchi
,
A.
Longo
,
G.
Valdes
 et al., “
An automated pipeline for scattered light noise characterization
,”
Classical Quantum Gravity
39
,
195005
(
2022
).
8.
A.
Longo
,
S.
Bianchi
,
G.
Valdes
 et al., “
Daily monitoring of scattered light noise due to microseismic variability at the Virgo interferometer
,”
Classical Quantum Gravity
39
,
035001
(
2022
).
9.
P.
Nguyen
,
R. M. S.
Schofield
,
A.
Effler
 et al., “
Environmental noise in advanced LIGO detectors
,”
Classical Quantum Gravity
38
,
145001
(
2021
).
10.
M.
Walker
,
A. F.
Agnew
,
J.
Bidler
 et al., “
Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression
,”
Classical Quantum Gravity
35
,
225002
(
2018
).
11.
R.
Tibshirani
, “
Regression shrinkage and selection via the lasso
,”
J. R. Stat. Soc., Ser. B
58
,
267
288
(
1996
).
12.
B.
Allen
,
J. K.
Blackburn
,
P. R.
Brady
 et al., “
Observational limit on gravitational waves from binary neutron stars in the galaxy
,”
Phys. Rev. Lett.
83
,
1498
(
1999
).
13.
A.
Effler
, “
aLIGO LLO Logbook: EY scatter-inducing resonance appears to be around 3.7 Hz
,”
Report
53025
(
2020
); available at https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=53025
14.
G.
Valdes
, “
aLIGO LLO Logbook: BLRMS signals - Individual excited times
,”
Report
No.
52110
(
2020
); available at https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=52110
You do not currently have access to this content.