We present a method to characterize the noise in ground-based gravitational-wave observatories such as the Laser Gravitational-Wave Observatory (LIGO). This method uses linear regression algorithms such as the least absolute shrinkage and selection operator to identify noise sources and analyzes the detector output vs noise witness sensors to quantify the coupling of such noise. Our method can be implemented with currently available resources at LIGO, which avoids extra coding or direct experimentation at the LIGO sites. We present two examples to validate and estimate the coupling of elevated ground motion at frequencies below 10 Hz with noise in the detector output.
References
1.
J.
Aasi
, B. P.
Abbott
, R.
Abbott
et al., “Advanced LIGO
,” Classical Quantum Gravity
32
, 074001
(2015
).2.
F.
Acernese
, M.
Agathos
, K.
Agatsuma
et al., “Advanced Virgo: Second-generation interferometric gravitational wave detector
,” Classical Quantum Gravity
32
, 024001
(2015
).3.
T.
Akutsu
, M.
Ando
, K.
Arai
et al., “KAGRA: 2.5 generation interferometric gravitational wave detector
,” Nat. Astron.
3
, 35
–40
(2019
).4.
D.
Davis
, J. S.
Areeda
, B. K.
Berger
et al., “LIGO detector characterization in the second and third observing runs
,” Classical Quantum Gravity
38
, 135014
(2021
).5.
T.
Accadia
, F.
Acernese
, F.
Antonucci
et al., “Noise from scattered light in Virgo's second science run data
,” Classical Quantum Gravity
27
, 194011
(2010
).6.
D.
Davis
and M.
Walker
, “Detector characterization and mitigation of noise in ground-based gravitational-wave interferometers
,” Galaxies
10
, 12
(2022
).7.
S.
Bianchi
, A.
Longo
, G.
Valdes
et al., “An automated pipeline for scattered light noise characterization
,” Classical Quantum Gravity
39
, 195005
(2022
).8.
A.
Longo
, S.
Bianchi
, G.
Valdes
et al., “Daily monitoring of scattered light noise due to microseismic variability at the Virgo interferometer
,” Classical Quantum Gravity
39
, 035001
(2022
).9.
P.
Nguyen
, R. M. S.
Schofield
, A.
Effler
et al., “Environmental noise in advanced LIGO detectors
,” Classical Quantum Gravity
38
, 145001
(2021
).10.
M.
Walker
, A. F.
Agnew
, J.
Bidler
et al., “Identifying correlations between LIGO's astronomical range and auxiliary sensors using lasso regression
,” Classical Quantum Gravity
35
, 225002
(2018
).11.
R.
Tibshirani
, “Regression shrinkage and selection via the lasso
,” J. R. Stat. Soc., Ser. B
58
, 267
–288
(1996
).12.
B.
Allen
, J. K.
Blackburn
, P. R.
Brady
et al., “Observational limit on gravitational waves from binary neutron stars in the galaxy
,” Phys. Rev. Lett.
83
, 1498
(1999
).13.
A.
Effler
, “aLIGO LLO Logbook: EY scatter-inducing resonance appears to be around 3.7 Hz
,” Report
53025
(2020
); available at https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=5302514.
G.
Valdes
, “aLIGO LLO Logbook: BLRMS signals - Individual excited times
,” Report
No. 52110
(2020
); available at https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=52110© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.