The progress in efficiency improvements of blade-coated two-dimensional perovskite solar cells (PSCs) lags behind that of spin-coated ones. Pinholes and voids are two important structural defects hiding in blade-coated large-area perovskite films to deteriorate device efficiency and stability. However, the formation of pinholes and voids is still difficult to predict. On substrates with moderate wettability, Dion–Jacobson perovskite films can be blade-coated with good coverage, but we highlight that the formation of nanoscale voids buried at the bottom side of perovskite films can occur frequently, depending critically on the wettability of substrates. It is revealed that super hydrophilic NiOx substrates with contact angle θ < 5° possesses strong bubble repellent property, which thermal dynamically prevents the retraction of precursor solution and plays an important role to suppress the attachment and growth of bubbles on its surface. The probabilities of forming both pinholes and buried voids in perovskite films on super hydrophilic NiOx substrates are one order of magnitude lower than that on hydrophilic PTAA and poly-TPD substrates. The blade-coated (BDA)MA4Pb5I16 films on NiOx substrate offer PSCs with excellent interfacial hole extraction and reduced leakage current, contributing a significant power conversion efficiency improvement from ∼10% to 16.26%.

1.
Y.
Lin
,
Y.
Bai
,
Y.
Fang
,
Q.
Wang
,
Y.
Deng
, and
J.
Huang
,
ACS Energy Lett.
2
(
7
),
1571
1571
(
2017
).
2.
J. W.
Lee
,
Z.
Dai
,
T. H.
Han
,
C.
Choi
,
S. Y.
Chang
,
S. J.
Lee
,
N.
De Marco
,
H.
Zhao
,
P.
Sun
,
Y.
Huang
, and
Y.
Yang
,
Nat. Commun.
9
(
1
),
3021
(
2018
).
3.
G.
Wu
,
T.
Yang
,
X.
Li
,
N.
Ahmad
,
X.
Zhang
,
S.
Yue
,
J.
Zhou
,
Y.
Li
,
H.
Wang
,
X.
Shi
,
S.
Liu
,
K.
Zhao
,
H.
Zhou
, and
Y.
Zhang
,
Matter
4
(
2
),
582
(
2021
).
4.
S.
Ahmad
,
P.
Fu
,
S.
Yu
,
Q.
Yang
,
X.
Liu
,
X.
Wang
,
X.
Wang
,
X.
Guo
, and
C.
Li
,
Joule
3
(
3
),
794
806
(
2019
).
5.
I. C.
Smith
,
E. T.
Hoke
,
D.
Solis-Ibarra
,
M. D.
McGehee
, and
H. I.
Karunadasa
,
Angew. Chem., Int. Ed.
53
(
42
),
11232
11235
(
2014
).
6.
J.
Liang
,
Z.
Zhang
,
Q.
Xue
,
Y.
Zheng
,
X.
Wu
,
Y.
Huang
,
X.
Wang
,
C.
Qin
,
Z.
Chen
, and
C. C.
Chen
,
Energy Environ. Sci.
15
(
1
),
296
310
(
2022
).
7.
H.
Tsai
,
W.
Nie
,
J. C.
Blancon
,
C. C.
Stoumpos
,
R.
Asadpour
,
B.
Harutyunyan
,
A. J.
Neukirch
,
R.
Verduzco
,
J. J.
Crochet
,
S.
Tretiak
,
L.
Pedesseau
,
J.
Even
,
M. A.
Alam
,
G.
Gupta
,
J.
Lou
,
P. M.
Ajayan
,
M. J.
Bedzyk
,
M. G.
Kanatzidis
, and
A. D.
Mohite
,
Nature
536
(
7616
),
312
316
(
2016
).
8.
X.
Zhang
,
T.
Yang
,
X.
Ren
,
L.
Zhang
,
K.
Zhao
, and
S.
Liu
,
Adv. Energy Mater.
11
(
19
),
2002733
(
2021
).
9.
J.
Shi
,
Y.
Gao
,
X.
Gao
,
Y.
Zhang
,
J.
Zhang
,
X.
Jing
, and
M.
Shao
,
Adv. Mater.
31
(
37
),
1901673
(
2019
).
10.
C.
Liang
,
H.
Gu
,
Y.
Xia
,
Z.
Wang
,
X.
Liu
,
J.
Xia
,
S.
Zuo
,
Y.
Hu
,
X.
Gao
,
W.
Hui
,
L.
Chao
,
T.
Niu
,
M.
Fang
,
H.
Lu
,
H.
Dong
,
H.
Yu
,
S.
Chen
,
X.
Ran
,
L.
Song
,
B.
Li
,
J.
Zhang
,
Y.
Peng
,
G.
Shao
,
J.
Wang
,
Y.
Chen
,
G.
Xing
, and
W.
Huang
,
Nat. Energy
6
(
1
),
38
45
(
2021
).
11.
D.
Lu
,
G.
Lv
,
Z.
Xu
,
Y.
Dong
,
X.
Ji
, and
Y.
Liu
,
J. Am. Chem. Soc.
142
(
25
),
11114
11121
(
2020
).
12.
H. H.
Huang
,
Q. H.
Liu
,
H.
Tsai
,
S.
Shrestha
,
L. Y.
Su
,
P. T.
Chen
,
Y. T.
Chen
,
T. A.
Yang
,
H.
Lu
,
C. H.
Chuang
,
K. F.
Lin
,
S. P.
Rwei
,
W.
Nie
, and
L.
Wang
,
Joule
5
(
4
),
958
917
(
2021
).
13.
C.
Zuo
,
A. D.
Scully
,
D.
Vak
,
W.
Tan
,
X.
Jiao
,
C. R.
McNeill
,
D.
Angmo
,
L.
Ding
, and
M.
Gao
,
Adv. Energy Mater.
9
(
4
),
1803258
(
2019
).
14.
Y.
Deng
,
X.
Zheng
,
Y.
Bai
,
Q.
Wang
,
J.
Zhao
, and
J.
Huang
,
Nat. Energy
3
(
7
),
560
566
(
2018
).
15.
X.
Dai
,
Y.
Deng
,
C. H.
Van Brackle
,
S.
Chen
,
P. N.
Rudd
,
X.
Xiao
,
Y.
Lin
,
B.
Chen
, and
J.
Huang
,
Adv. Energy Mater.
10
(
1
),
1903108
(
2020
).
16.
R.
Azmi
,
E.
Ugur
,
A.
Seitkhan
,
F.
Aljamaan
,
A.
Subbiah
,
J.
Liu
,
G. T.
Harrison
,
M. I.
Nugraha
,
M. K.
Eswaran
,
M.
Babics
,
Y.
Chen
,
F.
Xu
,
T. G.
Allen
,
A. U.
Rehman
,
C. L.
Wang
,
T. D.
Anthopoulos
,
U.
Schwingenschlögl
,
M. D.
Bastiani
,
E.
Aydin
, and
S. D.
Wolf
,
Science
376
(
6588
),
73
77
(
2022
).
17.
J.
Yoo
,
J.
Jang
,
U.
Kim
,
Y.
Lee
,
S.
Ji
,
E.
Noh
,
S.
Hong
,
M.
Choi
, and
S.
Il Seok
,
Joule
5
(
9
),
2420
2436
(
2021
).
18.
S.
Chen
,
S.
Xu
,
H.
Jiao
,
L.
Zhao
, and
J.
Huang
,
Science
373
(
6557
),
902
907
(
2021
).
19.
J.
Wang
,
S.
Luo
,
Y.
Lin
,
Y.
Chen
,
Y.
Deng
,
Z.
Li
,
K.
Meng
,
G.
Chen
,
T.
Huang
,
S.
Xiao
,
H.
Huang
,
C.
Zhou
,
L.
Ding
,
J.
He
,
J.
Huang
, and
Y.
Yuan
,
Nat. Commun.
11
(
1
),
582
590
(
2020
).
20.
J.
Ding
,
Q.
Han
,
Q.
Ge
,
D.
Xue
,
J.
Ma
,
B.
Zhao
,
Y.
Chen
,
J.
Liu
,
D. B.
Mitzi
, and
J.
Hu
,
Joule
3
(
2
),
402
416
(
2019
).
21.
J.
Lee
,
H.
Kang
,
G.
Kim
,
H.
Back
,
J.
Kim
,
S.
Hong
,
B.
Park
,
E.
Lee
, and
K.
Lee
,
Adv. Mater.
29
(
22
),
1606363
(
2017
).
22.
J.
Wang
,
S.
Luo
,
X.
Tang
,
S.
Xiao
,
Z.
Chen
,
S.
Pang
,
L.
Zhang
,
Y.
Lin
,
J.
He
, and
Y.
Yuan
,
ACS Energy Lett.
6
(
10
),
3634
3642
(
2021
).
23.
J.
Yong
,
F.
Chen
,
Q.
Yang
,
J.
Huo
, and
X.
Hou
,
Chem. Soc. Rev.
46
(
14
),
4168
4217
(
2017
).
24.
A. M. J.
Edwards
,
R.
Ledesma-Aguliar
,
M. I.
Newton
,
C. V.
Brown
, and
G.
McHale
,
Sci. Adv.
2
(
9
),
1600183
(
2016
).
25.
Y.
Lin
,
Y.
Fang
,
J.
Zhao
,
Y.
Shao
,
S. J.
Stuard
,
M. M.
Nahid
,
H.
Ade
,
Q.
Wang
,
J. E.
Shield
,
N.
Zhou
,
A. M.
Moran
, and
J.
Huang
,
Nat. Commun.
10
(
1
),
1008
(
2019
).
26.
B.
Zhao
,
J. S.
Moore
, and
D. J.
Beebe
,
Science
291
(
5506
),
1023
1026
(
2001
).
27.
J.
Yong
,
F.
Chen
,
Y.
Fang
,
J.
Huo
,
Q.
Yang
,
J.
Zhang
,
H.
Bian
, and
X.
Hou
,
ACS Appl. Mater. Interfaces
9
(
45
),
39863
39871
(
2017
).
28.
K. J.
Vachaparambil
and
K. E.
Einarsrud
,
J. Electrochem. Soc.
165
(
10
),
E504
E512
(
2018
).
29.
G.
Nagashima
,
E. V.
Levine
,
D. P.
Hoogerheide
,
M. M.
Burns
, and
J. A.
Golovchenko
,
Phys. Rev. Lett.
113
(
2
),
024506
(
2014
).
30.
A.
Sharma
and
E.
Ruckenstein
,
J. Colloid Interface Sci.
133
(
2
),
358
368
(
1989
).
31.
J. R.
Manders
,
S. W.
Tsang
,
M. J.
Hartel
,
T. H.
Lai
,
S.
Chen
,
C. M.
Amb
,
J. R.
Reynolds
, and
F.
So
,
Adv. Funct. Mater.
23
(
23
),
2993
3001
(
2013
).
32.
J.
You
,
L.
Meng
,
T. B.
Song
,
T. F.
Guo
,
Y. M.
Yang
,
W. H.
Chang
,
Z.
Hong
,
H.
Chen
,
H.
Zhou
,
Q.
Chen
,
Y.
Liu
,
N.
De Marco
, and
Y.
Yang
,
Nat. Nanotechnol.
11
(
1
),
75
81
(
2016
).
33.
Y.
Chen
,
J.
Hu
,
Z.
Xu
,
Z.
Jiang
,
S.
Chen
,
B.
Xu
,
X. X.
Liu
,
K.
Forberich
,
C. J.
Brabec
,
Y.
Mai
, and
F.
Guo
,
Adv. Funct. Mater.
32
(
19
),
2112146
(
2022
).
34.
Z.
Xiao
,
Q.
Dong
,
C.
Bi
,
Y.
Shao
,
Y.
Yuan
, and
J.
Huang
,
Adv. Mater.
26
(
37
),
6503
(
2014
).
35.
Y.
Deng
,
S.
Xu
,
S.
Chen
,
X.
Xiao
,
J.
Zhao
, and
J.
Huang
,
Nat. Energy
6
(
6
),
633
641
(
2021
).
36.
X.
Zheng
,
Y.
Hou
,
C.
Bao
,
J.
Yin
,
F.
Yuan
,
Z.
Huang
,
K.
Song
,
J.
Liu
,
J.
Troughton
,
N.
Gasparini
,
C.
Zhou
,
Y.
Lin
,
D. J.
Xue
,
B.
Chen
,
A. K.
Johnston
,
N.
Wei
,
M. N.
Hedhili
,
M.
Wei
,
A. Y.
Alsalloum
,
P.
Maity
,
B.
Turedi
,
D.
Baran
,
T. D.
Anthopoulos
,
Y.
Han
,
Z. H.
Lu
,
O. F.
Mohammed
,
F.
Gao
,
E. H.
Sargent
, and
O. M.
Bakr
,
Nat. Energy
5
(
2
),
131
140
(
2020
).

Supplementary Material

You do not currently have access to this content.