Black silicon (BSi) is a synthetic nanomaterial with high aspect ratio nano protrusions inducing several interesting properties such as a very large absorptivity of incident radiation. We have recently shown that heavily doping the BSi in volume enables to significantly enhance its mid-infrared absorptivity and tune its spectral range of interest up to 20 μm. In the present letter, we explore the effect of surface doping on BSi radiative properties and its absorptance in particular since surface doping enables reaching even larger dopant concentrations than volume doping but at more limited penetration depths. We considered 12 different wafers of BSi, fabricated with cryogenic plasma etching on n- and p-type silicon wafers and doped using ion-implantation with different dopant types, dosages, and ion beam energies, leading to different dopant concentrations and profiles. The different wafers radiative properties, reflectance, transmittance, and absorptance are experimentally measured using Fourier transform infrared spectroscopy. We show that doping an n-type BSi wafer with phosphorous with a dose of 1017 atm/cm2 and an energy of 100 keV increases its absorptivity up to 98% in the spectral range of 1–5 μm. We propose a simple phenomenological explanation of the observed results based on the dopant concentration profiles and the corresponding incident radiation penetration depth. Obtained results provide simple design rules and pave the way for using ion-implanted BSi for various applications, such as solar energy harvesting, thermo-photovoltaics, and infrared radiation sensing, where both high absorptance and variable dopant concentration profiles are required.

1.
S.
Mohammadi
,
A. A.
Eftekhar
,
A.
Khelif
,
W. D.
Hunt
, and
A.
Adibi
,
Appl. Phys. Lett.
92
,
221905
(
2008
).
2.
A.
Blanco
,
E.
Chomski
,
S.
Grabtchak
,
M.
Ibisate
,
S.
John
,
S. W.
Leonard
,
C.
Lopez
,
F.
Meseguer
,
H.
Miguez
,
J. P.
Mondia
,
G. A.
Ozin
,
O.
Toader
, and
H. M.
van Driel
,
Nature
405
,
437
(
2000
).
3.
E.
Nefzaoui
,
J.
Drevillon
, and
K.
Joulain
,
J. Appl. Phys.
111
,
084316
(
2012
).
4.
R.
Halir
,
A.
Ortega-Moñux
,
D.
Benedikovic
,
G. Z.
Mashanovich
,
J. G.
Wangüemert-Pérez
,
J. H.
Schmid
,
Í.
Molina-Fernández
, and
P.
Cheben
,
Proc. IEEE
106
,
2144
(
2018
).
5.
Y.-B.
Chen
and
Z. M.
Zhang
,
J. Phys. D
41
,
095406
(
2008
).
6.
Y.
Zhang
,
M.
Yuan
,
L.
Chen
,
B.
Cai
,
R.
Yang
, and
Y.
Zhu
,
Opt. Commun.
361
,
148
(
2016
).
7.
L.
Gao
,
E.
Nefzaoui
,
F.
Marty
,
X.
Wei
,
S.
Bastide
,
Y.
Leprince-Wang
, and
T.
Bourouina
,
Sol. Energy Mater. Sol. Cells
243
,
111793
(
2022
).
8.
J.
Lv
,
T.
Zhang
,
P.
Zhang
,
Y.
Zhao
, and
S.
Li
,
Nanoscale Res. Lett.
13
(
1
),
110
(
2018
).
9.
Y.
Xia
,
B.
Liu
,
J.
Liu
,
Z.
Shen
, and
C.
Li
,
Sol. Energy
85
,
1574
(
2011
).
10.
H.
Savin
,
P.
Repo
,
G. V.
Gastrow
,
P.
Ortega
,
E.
Calle
,
M.
Garín
, and
R.
Alcubilla
,
Nat. Nanotechnol.
10
,
624
(
2015
).
11.
P.
Hoyer
,
M.
Theuer
,
R.
Beigang
, and
E.-B.
Kley
,
Appl. Phys. Lett.
93
,
091106
(
2008
).
12.
E. P.
Ivanova
,
J.
Hasan
,
H. K.
Webb
,
G.
Gervinskas
,
S.
Juodkazis
,
V. K.
Truong
,
A. H.
Wu
,
R. N.
Lamb
,
V. A.
Baulin
, and
G. S.
Watson
,
Nat. Commun.
4
(
1
),
2838
(
2013
).
13.
S. A.
Iakab
,
P.
Ràfols
,
M.
Tajes
,
X.
Correig-Blanchar
, and
M.
García-Altares
,
ACS Nano
14
,
6785
(
2020
).
14.
X.-Y.
Yu
,
J.-H.
Zhao
,
C.-H.
Li
,
Q.-D.
Chen
, and
H.-B.
Sun
,
IEEE Trans. Nanotechnol.
16
,
502
(
2017
).
15.
D. G.
Kotsifaki
,
M.
Kandyla
, and
P. G.
Lagoudakis
,
Sci. Rep.
6
(
1
),
26275
(
2016
).
16.
Y.
Song
,
T.
Liu
,
S.
Liu
,
J.
Huang
,
J.
Li
,
C.
Tian
,
T.
Yu
,
Y.
He
,
Y.
Liu
, and
Z.
Zhong
,
J. Mater. Sci.
31
,
4696
4701
(
2020
).
17.
Y.
Chen
,
G.
Kang
,
A.
Shah
,
V.
Pale
,
Y.
Tian
,
Z.
Sun
,
I.
Tittonen
,
S.
Honkanen
, and
H.
Lipsanen
,
Adv. Mater. Interfaces
1
,
1300008
(
2014
).
18.
S. M.
Asiala
,
J. M.
Marr
,
G.
Gervinskas
,
S.
Juodkazis
, and
Z. D.
Schultz
,
Phys. Chem. Chem. Phys.
17
,
30461
(
2015
).
19.
H. D.
Omar
,
M. R.
Hashim
, and
M. Z.
Pakhuruddin
,
Optik
225
,
165781
(
2021
).
20.
S.
Sarkar
,
A. A.
Elsayed
,
F.
Marty
,
J.
Drévillon
,
Y. M.
Sabry
,
J.
Zhao
,
Y.
Yu
,
E.
Richalot
,
P.
Basset
, and
T.
Bourouina
, in
25th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)
(
IEEE
,
2019
), pp.
1
4
.
21.
L.
Rubin
and
J.
Poate
,
Ind. Phys.
9
,
12
(
2003
).
22.
J. W.
Mayer
, “
Ion implantation in semiconductors
,” in
1973 International Electron Devices Meeting
(
IEEE
,
1973
), pp.
3
5
.
23.
H.
Ryssel
and
K.
Hoffmann
, in
Process and Device Simulation for MOS-VLSI Circuits
(
Springer
,
1983
), pp.
125
179
.
24.
D. N.
Jamieson
,
C.
Yang
,
T.
Hopf
,
S. M.
Hearne
,
C. I.
Pakes
,
S.
Prawer
,
M.
Mitic
,
E.
Gauja
,
S. E.
Andresen
,
F. E.
Hudson
,
A. S.
Dzurak
, and
R. G.
Clark
,
Appl. Phys. Lett.
86
,
202101
(
2005
).
25.
M.
Perego
,
F.
Caruso
,
G.
Seguini
,
E.
Arduca
,
R.
Mantovan
,
K.
Sparnacci
, and
M.
Laus
,
J. Mater. Chem. C
8
,
10229
(
2020
).
26.
K. N.
Nguyen
,
P.
Basset
,
F.
Marty
,
Y.
Leprince-Wang
, and
T.
Bourouina
,
J. Appl. Phys.
113
,
194903
(
2013
).
27.
R. W.
Thomae
,
Nucl. Instrum. Methods Phys. Res., Sect. B
139
,
37
(
1998
).
28.
M. A.
Lieberman
,
J. Appl. Phys.
66
,
2926
(
1989
).
29.
J. V.
Mantese
,
I. G.
Brown
,
N. W.
Cheung
, and
G. A.
Collins
,
MRS Bull.
21
,
52
(
1996
).
30.
P. K.
Chu
,
S.
Qin
,
C.
Chan
,
N. W.
Cheung
, and
L. A.
Larson
,
Mater. Sci. Eng., R
17
,
207
(
1996
).
31.
S.
Sarkar
,
A.
Elsayed
,
F.
Marty
,
J.
Drevillon
,
Y.
Sabry
,
J.
Zhao
,
Y.
Yu
,
E.
Richalot
,
P.
Basset
, and
T.
Bourouina
, in
Congrès Annuel de La Société Française de Thermique
,
2020
.
32.
S.
Sarkar
,
A. A.
Elsayed
,
E.
Nefzaoui
,
J.
Drévillon
,
P.
Basset
,
F.
Marty
,
M.
Anwar
,
Y.
Yu
,
J.
Zhao
, and
X.
Yuan
, in
IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS)
(
IEEE
,
2019
), pp.
860
862
.
33.
S.
Sarkar
,
A. A.
Elsayed
,
Y. M.
Sabry
,
F.
Marty
,
J.
Drévillon
,
X.
Liu
,
Z.
Liang
,
E.
Richalot
,
P.
Basset
, and
E.
Nefzaoui
,
Adv. Photonics Res.
(published online,
2022
).
34.
P.
Van Zant
,
Microchip Fabrication
(
McGraw-Hill Education
,
2014
).

Supplementary Material

You do not currently have access to this content.