Droplet transport on a cylindrical wire has applications in numerous fields such as fog collection, mist elimination, filtration, and oil/water separation. This work reports a droplet transport phenomenon on a superhydrophilic wire that shows a transient velocity powered not by the gradient of substrate geometry or wettability but primarily by the surface-to-kinetic energy transition that occurs along the axial direction upon coalescence. The transition efficiency is mainly limited by the viscous friction at the local liquid wedge, a relationship that a modified Ohnesorge number can capture.
References
1.
Y.
Jiang
, S.
Savarirayan
, Y.
Yao
, and K.
Park
, “Fog collection on a superhydrophilic wire
,” Appl. Phys. Lett.
114
, 083701
(2019
).2.
C.
Shin
and G.
Chase
, “Water-in-oil coalescence in micro-nanofiber composite filters
,” AIChE J.
50
, 343
–350
(2004
).3.
T.
Frising
, C.
Noïk
, and C.
Dalmazzone
, “The liquid/liquid sedimentation process: From droplet coalescence to technologically enhanced water/oil emulsion gravity separators: A review
,” J. Dispersion Sci. Technol.
27
, 1035
–1057
(2006
).4.
E.
Brunazzi
and A.
Paglianti
, “Design of complex wire-mesh mist eliminators
,” AIChE J.
46
, 1131
–1137
(2000
).5.
I.
Agranovski
and R.
Braddock
, “Filtration of liquid aerosols on wettable fibrous filters
,” AIChE J.
44
, 2775
–2783
(1998
).6.
E.
Lorenceau
and D.
Quéré
, “Drops on a conical wire
,” J. Fluid Mech.
510
, 29
–45
(2004
).7.
B.
Carroll
, “Equilibrium conformations of liquid drops on thin cylinders under forces of capillarity. A theory for the roll-up process
,” Langmuir
2
, 248
–250
(1986
).8.
B.
Carroll
, “The accurate measurement of contact angle, phase contact areas, drop volume, and laplace excess pressure in drop-on-fiber systems
,” J. Colloid Interface Sci.
57
, 488
–495
(1976
).9.
G.
McHale
, N.
Käb
, M.
Newton
, and S.
Rowan
, “Wetting of a high-energy fiber surface
,” J. Colloid Interface Sci.
186
, 453
–461
(1997
).10.
G.
McHale
and M.
Newton
, “Global geometry and the equilibrium shapes of liquid drops on fibers
,” Colloids Surf. A: Physicochem. Eng. Aspects
206
, 79
–86
(2002
).11.
A. L.
Yarin
, W.
Liu
, and D.
Reneker
, “Motion of droplets along thin fibers with temperature gradient
,” J. Appl. Phys.
91
, 4751
–4760
(2002
).12.
T.
Gilet
, D.
Terwagne
, and N.
Vandewalle
, “Droplets sliding on fibres
,” Eur. Phys. J. E
31
, 253
–262
(2010
).13.
C.
Duprat
, S.
Protiere
, A.
Beebe
, and H.
Stone
, “Wetting of flexible fibre arrays
,” Nature
482
, 510
–513
(2012
).14.
R.
Schulman
, A.
Porat
, K.
Charlesworth
, A.
Fortais
, T.
Salez
, E.
Raphaël
, and K.
Dalnoki-Veress
, “Elastocapillary bending of microfibers around liquid droplets
,” Soft Matter
13
, 720
–724
(2017
).15.
J.
Boreyko
and C.
Chen
, “Self-propelled dropwise condensate on superhydrophobic surfaces
,” Phys. Rev. Lett.
103
, 184501
(2009
).16.
K.
Zhang
, F.
Liu
, A.
Williams
, X.
Qu
, J.
Feng
, and C.
Chen
, “Self-propelled droplet removal from hydrophobic fiber-based coalescers
,” Phys. Rev. Lett.
115
, 074502
(2015
).17.
R.
Enright
, N.
Miljkovic
, J.
Sprittles
, K.
Nolan
, R.
Mitchell
, and E.
Wang
, “How coalescing droplets jump
,” ACS Nano
8
, 10352
–10362
(2014
).18.
F.
Liu
, G.
Ghigliotti
, J.
Feng
, and C.
Chen
, “Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces
,” J. Fluid Mech.
752
, 39
–65
(2014
).19.
F.
Liu
, G.
Ghigliotti
, J.
Feng
, and C.
Chen
, “Self-propelled jumping upon drop coalescence on leidenfrost surfaces
,” J. Fluid Mech.
752
, 22
–38
(2014
).20.
H.
Cha
, C.
Xu
, J.
Sotelo
, J.
Chun
, Y.
Yokoyama
, R.
Enright
, and N.
Miljkovic
, “Coalescence-induced nanodroplet jumping
,” Phys. Rev. Fluids
1
, 064102
(2016
).21.
S.
Daniel
, M.
Chaudhury
, and J.
Chen
, “Fast drop movements resulting from the phase change on a gradient surface
,” Science
291
, 633
–636
(2001
).22.
M.
Garimella
, S.
Koppu
, S.
Kadlaskar
, V.
Pillutla
, and W.
Choi
, “Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution
,” J. Colloid Interface Sci.
505
, 1065
–1073
(2017
).23.
A.
Ghosh
, S.
Beaini
, B.
Zhang
, R.
Ganguly
, and C.
Megaridis
, “Enhancing dropwise condensation through bioinspired wettability patterning
,” Langmuir
30
, 13103
–13115
(2014
).24.
S.
Chandra
and C.
Avedisian
, “On the collision of a droplet with a solid surface
,” Proc. Royal Soc. London. Ser. A: Math. Phys. Sci.
432
, 13
–41
(1991
).25.
F. C.
Wang
, F.
Yang
, and Y. P.
Zhao
, “Size effect on the coalescence-induced self-propelled droplet
,” Appl. Phys. Lett.
98
, 053112
(2011
).26.
C.
Lv
, P.
Hao
, Z.
Yao
, Y.
Song
, X.
Zhang
, and F.
He
, “Condensation and jumping relay of droplets on lotus leaf
,” Appl. Phys. Lett.
103
, 021601
(2013
).27.
B.
Peng
, S.
Wang
, Z.
Lan
, W.
Xu
, R.
Wen
, and X.
Ma
, “Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence
,” Appl. Phys. Lett.
102
, 151601
(2013
).28.
S. T.
Thoroddsen
, K.
Takehara
, and T. G.
Etoh
, “The coalescence speed of a pendent and a sessile drop
,” J. Fluid Mech.
527
, 85
–114
(2005
).29.
T.
Mouterde
, T.
Nguyen
, H.
Takahashi
, C.
Clanet
, I.
Shimoyama
, and D.
Quéré
, “How merging droplets jump off a superhydrophobic surface: Measurements and model
,” Phys. Rev. Fluids
2
, 112001
(2017
).30.
J. D.
Paulsen
, J. C.
Burton
, and S. R.
Nagel
, “Viscous to inertial crossover in liquid drop coalescence
,” Phys. Rev. Lett.
106
, 114501
(2011
).31.
P. D.
Gennes
, “Wetting: Statics and dynamics
,” Rev. Mod. Phys.
57
, 827
–863
(1985
).32.
S.
Haefner
, O.
Bäumchen
, and K.
Jacobs
, “Capillary droplet propulsion on a fibre
,” Soft Matter
11
, 6921
–6926
(2015
).33.
P.
Brunet
, J.
Eggers
, and R. D.
Deegan
, “Vibration-induced climbing of drops
,” Phys. Rev. Lett.
99
, 144501
(2007
).34.
P.
Sartori
, E.
Guglielmin
, D.
Ferraro
, D.
Filippi
, A.
Zaltron
, M.
Pierno
, and G.
Mistura
, “Motion of Newtonian drops deposited on liquid-impregnated surfaces induced by vertical vibrations
,” J. Fluid Mech.
876
, R4
(2019
).35.
J.
Ju
, H.
Bai
, Y.
Zheng
, T.
Zhao
, R.
Fang
, and L.
Jiang
, “A multi-structural and multi-functional integrated fog collection system in cactus
,” Nat. Commun.
3
, 1247
(2012
).36.
Y.
Xue
, Y.
Chen
, T.
Wang
, L.
Jiang
, and Y.
Zheng
, “Directional size-triggered microdroplet target transport on gradient-step fibers
,” J. Mater. Chem. A
2
, 7156
–7160
(2014
).37.
T.
Xu
, Y.
Lin
, M.
Zhang
, W.
Shi
, and Y.
Zheng
, “High-efficiency fog collector: Water unidirectional transport on heterogeneous rough conical wires
,” ACS Nano
10
, 10681
–10688
(2016
).38.
H.
Chen
, T.
Ran
, Y.
Gan
, J.
Zhou
, Y.
Zhang
, L.
Zhang
, D.
Zhang
, and L.
Jiang
, “Ultrafast water harvesting and transport in hierarchical microchannels
,” Nat. Mater.
17
, 935
–942
(2018
).39.
H.
Zhou
, M.
Zhang
, C.
Li
, C.
Gao
, and Y.
Zheng
, “Excellent fog-droplets collector via integrative janus membrane and conical spine with micro/nanostructures
,” Small
14
, 1801335
(2018
).40.
B. E.
Pinchasik
, M.
Kappl
, and H. J.
Butt
, “Small structures, big droplets: The role of nanoscience in fog harvesting
,” ACS Nano
10
, 10627
–10630
(2016
).41.
C.
Luo
and X.
Wang
, “Conditions for barrel and clam-shell liquid drops to move on bio-inspired conical wires
,” Sci. Rep.
7
, 9717
(2017
).42.
K.
Park
, S.
Chhatre
, S.
Srinivasan
, R.
Cohen
, and G.
McKinley
, “Optimal design of permeable fiber network structures for fog harvesting
,” Langmuir
29
, 13269
–13277
(2013
).43.
Y.
Jiang
, C.
Machado
, S.
Savarirayan
, N.
Patankar
, and K.
Park
, “Onset time of fog collection
,” Soft Matter
15
, 6779
–6783
(2019
).44.
L.
Tanner
, “The spreading of silicone oil drops on horizontal surfaces
,” J. Phys. D: Appl. Phys.
12
, 1473
(1979
).45.
R.
Hoffman
, “A study of the advancing interface
,” J. Colloid Interface Sci.
50
, 228
–241
(1975
).46.
S.
Daniel
and M.
Chaudhury
, “Rectified motion of liquid drops on gradient surfaces induced by vibration
,” Langmuir
18
, 3404
–3407
(2002
).47.
X.
Noblin
, R.
Kofman
, and F.
Celestini
, “Ratchetlike motion of a shaken drop
,” Phys. Rev. Lett.
102
, 194504
(2009
).48.
P.
Sartori
, D.
Quagliati
, S.
Varagnolo
, M.
Pierno
, G.
Mistura
, F.
Magaletti
, and C.
Casciola
, “Drop motion induced by vertical vibrations
,” New J. Phys.
17
, 113017
(2015
).49.
R.
Deegan
, “Climbing a slippery slope
,” J. Fluid Mech.
882
, F1
(2020
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.