Photovoltaic solar cells are designed to efficiently absorb solar photons but convert only a limited proportion of them into electricity. Under real operating conditions, the remaining energy causes solar modules to heat up to 50–60 °C, which is detrimental to their power conversion efficiency and lifetime. In recent years, there has been a growing interest in the so-called radiative sky cooling strategy. This approach consists in optimizing the thermal radiation of cells or modules—with the help of photonic structures—by taking advantage of the atmospheric transparency in the 8–13 range. In this paper, we present an in-depth analysis of radiative sky cooling applied to silicon based photovoltaic modules. A simulation of a preliminary design of a photonic structure for possible radiative sky cooling of a module is also proposed.

1.
J.
Dumoulin
,
E.
Drouard
, and
M.
Amara
, “
Radiative sky cooling of solar cells: Fundamental modelling and cooling potential of single-junction devices
,”
Sustainable Energy Fuels
5
,
2085
2096
(
2021
).
2.
I. M.
Slauch
,
M. G.
Deceglie
,
T. J.
Silverman
, and
V. E.
Ferry
, “
Optical approaches for passive thermal management in c-Si photovoltaic modules
,”
Cell Rep. Phys. Sci.
2
,
100430
(
2021
).
3.
L.
Zhu
,
A. P.
Raman
, and
S.
Fan
, “
Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
12282
12287
(
2015
).
4.
Y.
Lu
,
Z.
Chen
,
L.
Ai
,
X.
Zhang
,
J.
Zhang
,
J.
Li
,
W.
Wang
,
R.
Tan
,
N.
Dai
, and
W.
Song
, “
A universal route to realize radiative cooling and light management in photovoltaic modules
,”
Sol. RRL
1
,
1700084
(
2017
).
5.
B.
Zhao
,
M.
Hu
,
X.
Ao
, and
G.
Pei
, “
Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module
,”
Sol. Energy
176
,
248
255
(
2018
).
6.
L.
Long
,
Y.
Yang
, and
L.
Wang
, “
Simultaneously enhanced solar absorption and radiative cooling with thin silica micro-grating coatings for silicon solar cells
,”
Sol. Energy Mater. Sol. Cells
197
,
19
24
(
2019
).
7.
Z.
Li
,
S.
Ahmed
, and
T.
Ma
, “
Investigating the effect of radiative cooling on the operating temperature of photovoltaic modules
,”
Sol. RRL
5
,
2000735
(
2021
).
8.
K. W.
Lee
,
W.
Lim
,
M. S.
Jeon
,
H.
Jang
,
J.
Hwang
,
C. H.
Lee
, and
D. R.
Kim
, “
Visibly clear radiative cooling metamaterials for enhanced thermal management in solar cells and windows
,”
Adv. Funct. Mater.
32
(
1
),
2105882
(
2022
).
9.
K.
Wang
,
G.
Luo
,
X.
Guo
,
S.
Li
,
Z.
Liu
, and
C.
Yang
, “
Radiative cooling of commercial silicon solar cells using a pyramid-textured PDMS film
,”
Sol. Energy
225
,
245
251
(
2021
).
10.
E.
Akerboom
,
T.
Veeken
,
C.
Hecker
,
J.
van de Groep
, and
A.
Polman
, “
Passive radiative cooling of silicon solar modules with photonic silica microcylinders
,”
ACS Photonics
(published online
2022
).
11.
H.
Fathabadi
, “
Novel silica-based PV glass cover providing higher radiative cooling and power production compared with state-of-the-art glass covers
,”
IEEE J. Photovoltaics
11
,
1485
1492
(
2021
).
12.
S.
Heo
,
D. H.
Kim
,
Y. M.
Song
, and
G. J.
Lee
, “
Determining the effectiveness of radiative cooler-integrated solar cells
,”
Adv. Energy Mater.
12
,
2103258
(
2022
).
13.
W.
Li
,
Y.
Shi
,
K.
Chen
,
L.
Zhu
, and
S.
Fan
, “
A comprehensive photonic approach for solar cell cooling
,”
ACS Photonics
4
,
774
782
(
2017
).
14.
B.
Zhao
,
K.
Lu
,
M.
Hu
,
J.
Liu
,
L.
Wu
,
C.
Xu
,
Q.
Xuan
, and
G.
Pei
, “
Radiative cooling of solar cells with micro-grating photonic cooler
,”
Renewable Energy
191
,
662
668
(
2022
).
15.
G.
Silva-Oelker
and
J.
Jaramillo-Fernandez
, “
Numerical study of sodalime and PDMS hemisphere photonic structures for radiative cooling of silicon solar cells
,”
Opt. Express
30
,
32965
(
2022
).
16.
A. R.
Gentle
and
G. B.
Smith
, “
Is enhanced radiative cooling of solar cell modules worth pursuing?
,”
Sol. Energy Mater. Sol. Cells
150
,
39
42
(
2016
).
17.
A.
Riverola
,
A.
Mellor
,
D. A.
Alvarez
,
L.
Ferre Llin
,
I.
Guarracino
,
C. N.
Markides
,
D. J.
Paul
,
D.
Chemisana
, and
N.
Ekins-Daukes
, “
Mid-infrared emissivity of crystalline silicon solar cells
,”
Sol. Energy Mater. Sol. Cells
174
,
607
615
(
2018
).
18.
J.
Jaramillo-Fernandez
,
G. L.
Whitworth
,
J. A.
Pariente
,
A.
Blanco
,
P. D.
Garcia
,
C.
Lopez
, and
C. M.
Sotomayor-Torres
, “
A self-assembled 2D thermofunctional material for radiative cooling
,”
Small
15
,
1905290
(
2019
).
19.
G.
Perrakis
,
A. C.
Tasolamprou
,
G.
Kenanakis
,
E. N.
Economou
,
S.
Tzortzakis
, and
M.
Kafesaki
, “
Combined nano and micro structuring for enhanced radiative cooling and efficiency of photovoltaic cells
,”
Sci. Rep.
11
,
11552
(
2021
).
20.
Á.
Andueza
,
C.
Pinto
,
D.
Navajas
, and
J.
Sevilla
, “
Enhanced thermal performance of photovoltaic panels based on glass surface texturization
,”
Opt. Mater.
121
,
111511
(
2021
).
21.
M. A.
Green
and
A. W.
Ho-Baillie
, “
Pushing to the limit: Radiative efficiencies of recent mainstream and emerging solar cells
,”
ACS Energy Lett.
4
,
1639
1644
(
2019
).
22.
K.
Yoshikawa
,
H.
Kawasaki
,
W.
Yoshida
,
T.
Irie
,
K.
Konishi
,
K.
Nakano
,
T.
Uto
,
D.
Adachi
,
M.
Kanematsu
,
H.
Uzu
, and
K.
Yamamoto
, “
Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
,”
Nat. Energy
2
,
17032
(
2017
).
23.
M.
Müller
,
G.
Fischer
,
B.
Bitnar
,
S.
Steckemetz
,
R.
Schiepe
,
M.
Mühlbauer
,
R.
Köhler
,
P.
Richter
,
C.
Kusterer
,
A.
Oehlke
,
E.
Schneiderlöchner
,
H.
Sträter
,
F.
Wolny
,
M.
Wagner
,
P.
Palinginis
, and
D. H.
Neuhaus
, “
Loss analysis of 22% efficient industrial PERC solar cells
,”
Energy Procedia
124
,
131
137
(
2017
).
24.
O.
Dupré
,
R.
Vaillon
, and
M. A.
Green
, “
Physics of the temperature coefficients of solar cells
,”
Sol. Energy Mater. Sol. Cells
140
,
92
100
(
2015
).
25.
S.
Larouche
and
L.
Martinu
, “
Openfilters: Open-source software for the design, optimization, and synthesis of optical filters
,”
Appl. Opt.
47
,
C219
C230
(
2008
).

Supplementary Material

You do not currently have access to this content.