Core/shell CdSe/CdZnS nanoplatelets (NPLs) are a promising class of nanomaterials for lasing applications owing to their low thresholds and high stability of stimulated emission generation as compared with many other types of colloids. Moreover, they can be self-assembled into high-quality thin films by simple methods of deposition. However, the high throughput and reproducible methods for nanopatterning of such films for advanced light-emitting applications are still missing. In this work, we show direct laser writing on thin films assembled from CdSe/CdZnS NPLs using either spin-coating or the self-assembly method for the purpose of fabricating. Using theoretical calculations, we design the period of the structures to achieve high quality-factor optical modes in the emission band of NPLs. In these nanostructured NPL films, fabricated according to the design, we observe photoluminescence enhancement and directional outcoupling effects. The proposed approach holds great potential for LEDs with improved outcoupling and for distributed feedback lasers or lasers based on bound states in the continuum with directly written optical cavities.

1.
V. I.
Klimov
,
A. A.
Mikhailovsky
,
D. W.
McBranch
,
C. A.
Leatherdale
, and
M. G.
Bawendi
, “
Quantization of multiparticle Auger rates in semiconductor quantum dots
,”
Science
287
(
5455
),
1011
1013
(
2000
).
2.
J. Q.
Grim
,
S.
Christodoulou
,
F.
Di Stasio
,
R.
Krahne
,
R.
Cingolani
,
L.
Manna
, and
I.
Moreels
, “
Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells
,”
Nat. Nanotechnol.
9
(
11
),
891
895
(
2014
).
3.
M.
Sharma
,
S.
Delikanli
, and
H. V.
Demir
, “
Two-dimensional CdSe-based nanoplatelets: Their heterostructures, doping, photophysical properties, and applications
,”
Proc. IEEE
108
(
5
),
655
675
(
2020
).
4.
J.
Zhang
,
Y.
Sun
,
S.
Ye
,
J.
Song
, and
J.
Qu
, “
Heterostructures in two-dimensional CdSe nanoplatelets: Synthesis, optical properties, and applications
,”
Chem. Mater.
32
(
22
),
9490
9507
(
2020
).
5.
B.
Guzelturk
,
M.
Pelton
,
M.
Olutas
, and
H. V.
Demir
, “
Giant modal gain coefficients in colloidal II–VI nanoplatelets
,”
Nano Lett.
19
(
1
),
277
282
(
2019
).
6.
B.
Guzelturk
,
Y.
Kelestemur
,
M.
Olutas
,
S.
Delikanli
, and
H. V.
Demir
, “
Amplified spontaneous emission and lasing in colloidal nanoplatelets
,”
ACS Nano
8
(
7
),
6599
6605
(
2014
).
7.
Y.
Altintas
,
K.
Gungor
,
Y.
Gao
,
M.
Sak
,
U.
Quliyeva
,
G.
Bappi
,
E.
Mutlugun
,
E. H.
Sargent
, and
H. V.
Demir
, “
Giant alloyed hot injection shells enable ultralow optical gain threshold in colloidal quantum wells
,”
ACS Nano
13
(
9
),
10662
10670
(
2019
).
8.
H.
Yang
,
L.
Zhang
,
W.
Xiang
,
C.
Lu
,
Y.
Cui
, and
J.
Zhang
, “
Ultralow threshold room temperature polariton condensation in colloidal CdSe/CdS core/shell nanoplatelets
,”
Adv. Sci.
9
,
2200395
(
2022
).
9.
Y.
Mi
,
B.
Jin
,
L.
Zhao
,
J.
Chen
,
S.
Zhang
,
J.
Shi
,
Y.
Zhong
,
W.
Du
,
J.
Zhang
,
Q.
Zhang
,
T.
Zhai
, and
X.
Liu
, “
High‐quality hexagonal nonlayered CdS nanoplatelets for low‐threshold whispering‐gallery‐mode lasing
,”
Small
15
(
35
),
1901364
(
2019
).
10.
E.
Tiguntseva
,
K.
Koshelev
,
A.
Furasova
,
P.
Tonkaev
,
V.
Mikhailovskii
,
E. V.
Ushakova
,
D. G.
Baranov
,
T.
Shegai
,
A. A.
Zakhidov
,
Y.
Kivshar
, and
S. V.
Makarov
, “
Room-temperature lasing from Mie-resonant nonplasmonic nanoparticles
,”
ACS Nano
14
(
7
),
8149
8156
(
2020
).
11.
A.
Kodigala
,
T.
Lepetit
,
Q.
Gu
,
B.
Bahari
,
Y.
Fainman
, and
B.
Kanté
, “
Lasing action from photonic bound states in continuum
,”
Nature
541
(
7636
),
196
199
(
2017
).
12.
M.
Wu
,
S. T.
Ha
,
S.
Shendre
,
E. G.
Durmusoglu
,
W. K.
Koh
,
D. R.
Abujetas
,
J. A.
Sánchez-Gil
,
R.
Paniagua-Domínguez
,
H. V.
Demir
, and
A. I.
Kuznetsov
, “
Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum
,”
Nano Lett.
20
(
8
),
6005
6011
(
2020
).
13.
M.
Sak
,
N.
Taghipour
,
S.
Delikanli
,
S.
Shendre
,
I.
Tanriover
,
S.
Foroutan
,
Y.
Gao
,
J.
Yu
,
Z.
Yanyan
,
S.
Yoo
,
C.
Dang
, and
H. V.
Demir
, “
Coreless fiber‐based whispering‐gallery‐mode assisted lasing from colloidal quantum well solids
,”
Adv. Funct. Mater.
30
(
1
),
1907417
(
2020
).
14.
N.
Gheshlaghi
,
S.
Foroutan-Barenji
,
O.
Erdem
,
Y.
Altintas
,
F.
Shabani
,
M. H.
Humayun
, and
H. V.
Demir
, “
Self-resonant microlasers of colloidal quantum wells constructed by direct deep patterning
,”
Nano Lett.
21
(
11
),
4598
4605
(
2021
).
15.
A. Y.
Zhizhchenko
,
P.
Tonkaev
,
D.
Gets
,
A.
Larin
,
D.
Zuev
,
S.
Starikov
,
E. V.
Pustovalov
,
A. M.
Zakharenko
,
S. A.
Kulinich
,
S.
Juodkazis
,
A. A.
Kuchmizhak
, and
S. V.
Makarov
, “
Light‐emitting nanophotonic designs enabled by ultrafast laser processing of halide perovskites
,”
Small
16
(
19
),
2000410
(
2020
).
16.
A. Y.
Zhizhchenko
,
A. B.
Cherepakhin
,
M. A.
Masharin
,
A. P.
Pushkarev
,
S. A.
Kulinich
,
A. A.
Kuchmizhak
, and
S. V.
Makarov
, “
Directional lasing from nanopatterned halide perovskite nanowire
,”
Nano Lett.
21
(
23
),
10019
10025
(
2021
).
17.
O.
Erdem
,
S.
Foroutan
,
N.
Gheshlaghi
,
B.
Guzelturk
,
Y.
Altintas
, and
H. V.
Demir
, “
Thickness-tunable self-assembled colloidal nanoplatelet films enable ultrathin optical gain media
,”
Nano Lett.
20
(
9
),
6459
6465
(
2020
).
18.
L.
Yang
,
J.
Wei
,
Z.
Ma
,
P.
Song
,
J.
Ma
,
Y.
Zhao
,
Z.
Huang
,
M.
Zhang
,
F.
Yang
, and
X.
Wang
, “
The fabrication of micro/nano structures by laser machining
,”
Nanomaterials
9
(
12
),
1789
(
2019
).
19.
D.
Bäuerle
,
Laser Processing and Chemistry
, Springer Science and Business Media (
Springer
,
2013
).
20.
J.
Byskov-Nielsen
,
J. M.
Savolainen
,
M. S.
Christensen
, and
P.
Balling
, “
Ultra-short pulse laser ablation of metals: Threshold fluence, incubation coefficient and ablation rates
,”
Appl. Phys. A
101
(
1
),
97
101
(
2010
).
21.
J.
Hermann
,
M.
Benfarah
,
G.
Coustillier
,
S.
Bruneau
,
E.
Axente
,
J. F.
Guillemoles
,
M.
Sentisa
,
P.
Alloncle
, and
T.
Itina
, “
Selective ablation of thin films with short and ultrashort laser pulses
,”
Appl. Surf. Sci.
252
(
13
),
4814
4818
(
2006
).
22.
H.
Kim
,
J.
Park
, and
B.
Lee
,
Fourier Modal Method and Its Applications in Computational Nanophotonics
(
CRC Press
,
Boca Raton
,
2012
), p.
66
.
23.
L. M.
Pazos-Outón
,
M.
Szumilo
,
R.
Lamboll
,
J. M.
Richter
,
M.
Crespo-Quesada
,
M.
Abdi-Jalebi
,
H. J.
Beeson
,
M.
Vrućinić
,
M.
Alsari
,
H. J.
Snaith
,
B.
Ehrler
,
R. H.
Friend
, and
F.
Deschler
, “
Photon recycling in lead iodide perovskite solar cells
,”
Science
351
(
6280
),
1430
1433
(
2016
).
24.
Z. F.
Sadrieva
,
I. S.
Sinev
,
K. L.
Koshelev
,
A.
Samusev
,
I. V.
Iorsh
,
O.
Takayama
,
R.
Malureanu
,
A. A.
Bogdanov
, and
A. V.
Lavrinenko
, “
Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness
,”
ACS Photonics
4
(
4
),
723
727
(
2017
).
25.
V. M.
Rao
and
S.
Hughes
, “
Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide
,”
Phys. Rev. B
75
(
20
),
205437
(
2007
).

Supplementary Material

You do not currently have access to this content.