High-throughput printing-based fabrication has emerged as a key enabler of flexible electronics given its unique capability for low-cost integration of circuits based on printed thin film transistors (TFTs). Research in printing inorganic metal oxides has revealed the potential for fabricating oxide TFTs with an unmatched combination of high electron mobility and optical transparency. Here, we highlight recent developments in ink chemistry, printing physics, and material design for high-mobility metal oxide transistors. We consider ongoing challenges for this field that include lowering process temperatures, achieving high speed and high resolution printing, and balancing device performance with the need for high mechanical flexibility. Finally, we provide a roadmap for overcoming these challenges with emerging synthetic strategies for fabricating 2D oxides and complementary TFT circuits for flexible electronics.

Supplementary Material

You do not currently have access to this content.