Plasmonic nanoparticles, such as Au nanoparticles, have been used as effective exogeneous contrast agents in photoacoustic imaging. However, using these particles to enhance photoacoustic wave generation from other light absorbers is difficult because the signal is overwhelmed by the signal from plasmonic nanoparticles themselves. In this study, we realized the surface-enhanced photoacoustic effect by using high-refractive-index dielectric nanoparticles in their ultralow light absorption Ohmic-loss wavelength band. We performed finite element method simulation on a model with gallium phosphide nanorod dimmer and light absorbers in the dimmer gap. The Au nanowire, carbon nanotube, and nanotube filled with melanin molecules were sequentially considered as the light absorber. It is found that a photoacoustic wave surface enhancement factor of approximately 10 was achieved and the enhanced photoacoustic wave ensures the photoacoustic spectral signature of the light absorber. The potential of optimization for boosting enhancement factors was further analyzed. These results can provide considerable insight into molecular photoacoustic sensing and imaging.

1.
L.
Weller
,
V. V.
Thacker
,
L. O.
Herrmann
,
E. A.
Hemmig
,
A.
Lombardi
,
U. F.
Keyser
, and
J. J.
Baumberg
,
ACS Photonics
3
(
9
),
1589
1595
(
2016
).
2.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
,
J. Phys. Chem. B
107
(
3
),
668
677
(
2003
).
3.
P.
Pavaskar
,
J.
Theiss
, and
S. B.
Cronin
,
Opt. Express
20
(
13
),
14656
14662
(
2012
).
4.
O. D.
Miller
,
S. G.
Johnson
, and
A. W.
Rodriguez
,
Phys. Rev. Lett.
115
,
204302
(
2015
).
5.
T. V.
Shahbazyan
,
Phys. Rev. Lett.
117
,
207401
(
2016
).
6.
B. I.
Popa
and
S.
Cummer
,
Phys. Rev. Lett.
100
,
207401
(
2008
).
7.
J.
Valentine
,
S.
Zhang
,
T.
Zentgraf
,
E.
Ulin-Avila
,
D. A.
Genov
,
G.
Bartal
, and
X.
Zhang
,
Nature
455
,
376
379
(
2008
).
8.
R.
Verre
,
D. G.
Baranov
,
B.
Munkhbat
,
J.
Cuadra
,
M.
Käll
, and
T.
Shegai
,
Nat. Nanotechnol.
14
,
679
683
(
2019
).
9.
Y.
Yang
,
O. D.
Miller
,
T.
Christensen
,
J. D.
Joannopoulos
, and
M.
Soljacic
,
Nano Lett.
17
,
3238
3245
(
2017
).
10.
M. D.
King
,
S.
Khadka
,
G. A.
Craig
, and
M. D.
Mason
,
J. Phys. Chem. C
112
,
11751
(
2008
).
11.
G. P.
Zograf
,
M. I.
Petrov
,
S. V.
Makarov
, and
Y. S.
Kivshar
,
Adv. Opt. Photonics
13
(
3
),
643
703
(
2021
).
12.
X.
Tian
,
L. C.
Murfin
,
L. L.
Wu
,
S. E.
Lewis
, and
T. D.
James
,
Chem. Sci.
12
(
10
),
3406
3426
(
2021
).
13.
J. C.
Ge
,
Q. Y.
Jia
,
W. M.
Liu
,
L.
Guo
,
Q. Y.
Liu
,
M. H.
Lan
,
H. Y.
Zhang
,
X. M.
Meng
, and
P. F.
Wang
,
Adv. Mater.
27
(
28
),
4169
4177
(
2015
).
14.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Luk'yanchuk
,
Science
354
(
6314
),
2742
(
2016
).
15.
T.
Tanaka
,
T.
Yano
, and
R.
Kato
,
Nanophotonics
11
(
11
),
2541
2561
(
2022
).
16.
J. P.
Sun
,
Y. T.
Ren
,
Z. X.
Liu
,
M. J.
He
,
B. H.
Gao
, and
H.
Qi
,
J. Phys. Chem. C
126
,
3489
3501
(
2022
).
17.
D. Q.
Chen
,
C. A.
Dougherty
, and
K.
Zhu
,
J. Controlled Release
210
(
1
),
230
245
(
2015
).
18.
C. R.
Ma
,
J. H.
Yan
,
Y. C.
Huang
,
Z. Q.
Zheng
, and
G. W.
Yang
,
Nanotechnology
31
,
065204
(
2020
).
19.
J. J.
Yao
and
L. H. V.
Wang
,
Curr. Opin. Chem. Biol.
45
,
104
112
(
2018
).
20.
L.
Lin
and
L. H. V.
Wang
,
Nat. Rev. Clin. Oncol.
19
(
6
),
365
384
(
2022
).
21.
Q. R.
Fu
,
R.
Zhu
,
J. B.
Song
,
H. H.
Yang
, and
X. Y.
Chen
,
Adv. Mater.
31
,
1805875
(
2019
).
22.
J. D.
Zheng
,
Q.
Zeng
,
R. J.
Zhang
,
D.
Xing
, and
T.
Zhang
,
J. Am. Chem. Soc.
141
,
19226
19230
(
2019
).
23.
W. T.
Li
,
R. H.
Chen
,
J.
Lv
,
H. K.
Wang
,
Y.
Liu
,
Y.
Peng
,
Z. Y.
Qian
,
G.
Fu
, and
L. M.
Nie
,
Adv. Sci.
5
,
1700277
(
2018
).
24.
Y. J.
Liu
,
H. H.
Liu
,
H. X.
Yan
,
Y. C.
Liu
,
J. S.
Zhang
,
W. J.
Shan
,
P. X.
Lai
,
H. H.
Li
,
L.
Ren
,
Z. J.
Li
, and
L. M.
Nie
,
Adv. Sci.
6
(
8
),
1801615
(
2019
).
25.
X.
Li
,
Y. F.
Tang
,
J.
Li
,
X. M.
Hu
,
C.
Yin
,
Z.
Yang
,
Q.
Wang
,
Z. Z.
Wu
,
X. M.
Lu
,
W. J.
Wang
,
W.
Huang
, and
Q. L.
Fan
,
Chem. Commun.
55
,
5934
5937
(
2019
).
26.
P.
Albella
,
R. A.
de la Osa
,
F.
Moreno
, and
S. A.
Maier
,
ACS Photonics
1
,
524
529
(
2014
).
27.
M. L.
De la Chapelle
,
H. X.
Han
, and
C. C.
Tang
,
Eur. Phys. J. B
46
,
507
513
(
2005
).
28.
F. J.
Lopez
,
J. K.
Hyun
,
U.
Givan
,
I. S.
Kim
,
A. L.
Holsteen
, and
L. J.
Lauhon
,
Nano Lett.
12
,
2266
2271
(
2012
).
29.
J.
Cambiasso
,
G.
Grinblat
,
Y.
Li
,
A.
Rakovich
,
E.
Cortés
, and
S. A.
Maier
,
Nano Lett.
17
(
2
),
1219
1225
(
2017
).
30.
J.
Cambiasso
,
M.
Konig
,
E.
Cortés
,
S.
Schlucker
, and
S. A.
Maier
,
ACS Photonics
5
(
4
),
1546
1557
(
2018
).
31.
R.
Regmi
,
J.
Berthelot
,
P. M.
Winkler
,
M.
Mivelle
,
J.
Proust
,
F.
Bedu
,
I.
Ozerov
,
T.
Begou
,
J.
Lumeau
, and
H.
Rigneault
,
Nano Lett.
16
(
8
),
5143
5151
(
2016
).
32.
A.
Hatef
,
B.
Darvish
,
A.
Dagallier
, and
Y. R.
Davletshin
,
J. Phys. Chem. C
119
,
24075
24080
(
2015
).
33.
H. Q.
Yu
,
J.
Yao
,
X. W.
Wu
,
D. J.
Wu
, and
X. J.
Liu
,
J. Appl. Phys.
122
,
134901
(
2017
).
34.
D.
Kumar
,
D. P.
Ghai
, and
R. K.
Soni
,
Plasmonics
13
,
1833
1841
(
2018
).
35.
Y. J.
Shi
,
H.
Qin
,
S. H.
Yang
, and
D.
Xing
,
Nano Res.
9
(
12
),
3644
3655
(
2016
).
36.
E. P.
Furlani
,
I. H.
Karampelas
, and
Q.
Xie
,
Lab Chip
12
,
3707
3719
(
2012
).
37.
A. O.
Govorov
,
W.
Zhang
,
T.
Skeini
,
H.
Richardson
,
J.
Lee
, and
N. A.
Kotov
,
Nanoscale Res. Lett.
1
,
84
90
(
2006
).
38.
Comsol Multiphysics
,
Acoustic Module User's Guide, Version 4.3b
(
Comsol Multiphysics
,
2013
).
39.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
New York
,
2007
).
40.
W. Y.
Li
,
A.
Patil
,
X. H.
Zhou
,
Z.
Wang
,
M.
Xiao
,
M. D.
Shawkey
,
N. C.
Gianneschi
, and
A.
Dhinojwala
,
Appl. Phys. Lett.
117
(20),
203701
(
2020
).

Supplementary Material

You do not currently have access to this content.