This paper reports a chip-scale radio frequency Lorentz-force gyrator based on an aluminum scandium nitride (Al0.7Sc0.3N) thin film. The two-port gyrator, which is essentially a lateral overtone bulk acoustic resonator, consists of a planar coil for Lorentz-force transduction and two top-bottom electrode pairs for piezoelectric transduction. The non-reciprocity is generated by the phase transition in the Lorentz-force coupling when an external vertical magnetic field is applied. The Lorentz-force gyrators based on both AlN and Al0.7Sc0.3N thin films demonstrate good non-reciprocity, i.e., the 180° phase difference, at approximately 517 and 388 MHz, respectively. Thanks to larger piezoelectric constants, the Al0.7Sc0.3N gyrator demonstrates easier impedance matching and a wider fractional bandwidth of 6.3% at a magnetic field of 1.65 T compared to 1.3% for an AlN device. Finally, an isolator consisting of the Lorentz-force gyrator and a shunt resistor is demonstrated over 35 dB of isolation and flat unidirectional transmission.

1.
D.
Bharadia
,
E.
McMilin
, and
S.
Katti
, in
Proceedings of the ACM SIGCOMM Conference on SIGCOMM
(
Association for Computing Machinery
,
2013
), pp.
375
386
.
2.
J.
Zhou
,
N.
Reiskarimian
,
J.
Diakonikolas
,
T.
Dinc
,
T.
Chen
,
G.
Zussman
, and
H.
Krishnaswamy
,
IEEE Commun. Mag.
55
,
142
(
2017
).
3.
A.
Sabharwal
,
P.
Schniter
,
D.
Guo
,
D. W.
Bliss
,
S.
Rangarajan
, and
R.
Wichman
,
IEEE J. Sel. Areas Commun.
32
,
1637
(
2014
).
4.
B. D.
Tellegen
,
Philips Res. Rep.
3
,
81
(
1948
).
5.
C. E.
Fay
and
R. L.
Comstock
,
IEEE Trans. Microwave Theory Tech.
13
,
15
(
1965
).
6.
M.
Pardavi-Horvath
,
J. Magn. Magn. Mater
215–216
,
171
(
2000
).
7.
E. N.
Skomal
,
IEEE Trans. Microwave Theory Tech.
11
,
117
(
1963
).
8.
V. G.
Harris
,
IEEE Trans. Magn.
48
,
1075
(
2012
).
9.
N.
Reiskarimian
and
H.
Krishnaswamy
,
Nat. Commun.
7
,
11217
(
2016
).
10.
D. L.
Sounas
,
C.
Caloz
, and
A.
Alù
,
Nat. Commun.
4
,
2407
(
2013
).
11.
N. A.
Estep
,
D. L.
Sounas
,
J.
Soric
, and
A.
Alù
,
Nat. Phys.
10
,
923
(
2014
).
12.
M.
Kostylev
,
J. Appl. Phys.
113
,
053907
(
2013
).
13.
A.
Palermo
,
P.
Celli
,
B.
Yousefzadeh
,
C.
Daraio
, and
A.
Marzani
,
J. Mech. Phys. Solids
145
,
104181
(
2020
).
14.
H.
Mansoorzare
and
R.
Abdolvand
,
IEEE Electron Device Lett.
41
,
1444
(
2020
).
15.
M. M.
Torunbalci
,
T. J.
Odelberg
,
S.
Sridaran
,
R. C.
Ruby
, and
S. A.
Bhave
,
IEEE Microwave Wireless Compon. Lett.
28
,
395
(
2018
).
16.
G.
Michetti
,
C.
Cassella
,
F.
Pop
,
M.
Pirro
,
A.
Kord
,
D.
Sounas
,
A.
Alú
, and
M.
Rinaldi
, in
IEEE International Ultrasonics Symposium (IUS)
(
IEEE
,
2018
), pp.
206
212
.
17.
S.
Ghosh
and
M.
Ricci
, in
Joint Conference of the IEEE International Frequency Control Symposium & IEEE International Symposium on Applications of Ferroelectrics (IFCS-ISAF)
(
IEEE
,
2020
).
18.
R.
Lu
,
T.
Manzaneque
,
Y.
Yang
,
L.
Gao
,
A.
Gao
, and
S.
Gong
,
IEEE Trans. Microwave Theory Tech.
67
,
1516
(
2019
).
19.
H.
Tian
,
J.
Liua
,
A.
Siddharth
,
R. N.
Wang
,
T.
Blésin
,
J.
He
,
T. J.
Kippenberg
, and
S. A.
Bhave
, in
Conference on Lasers Electro-Optics (CLEO)
(
2021
).
20.
R.
Lu
,
J.
Krol
,
L.
Gao
, and
S.
Gong
,
Sci. Rep.
8
,
14655
(
2018
).
21.
J.
Zhang
,
B.
Ge
,
Q.
Zhang
,
D. A.
Filippov
,
J.
Wu
,
J.
Tao
,
Z.
Jia
,
L.
Jiang
,
L.
Cao
, and
G.
Srinivasan
,
Appl. Phys. Lett.
118
,
042402
(
2021
).
22.
X.
Zhuang
,
C. M.
Leung
,
G.
Sreenivasulu
,
M.
Gao
,
J.
Zhang
,
G.
Srinivasan
,
J.
Li
, and
D.
Viehland
,
Appl. Phys. Lett.
111
,
163902
(
2017
).
23.
C. M.
Leung
,
X.
Zhuang
,
D.
Friedrichs
,
J.
Li
,
R. W.
Erickson
,
V.
Laletin
,
M.
Popov
,
G.
Srinivasan
, and
D.
Viehland
,
Appl. Phys. Lett.
111
,
122904
(
2017
).
24.
J.
Zhai
,
J.
Li
,
S.
Dong
,
D.
Viehland
, and
M. I.
Bichurin
,
J. Appl. Phys.
100
,
124509
(
2006
).
25.
C. M.
Leung
,
G.
Sreenivasulu
,
X.
Zhuang
,
X.
Tang
,
M.
Gao
,
J.
Xu
,
J.
Li
,
J.
Zhang
,
G.
Srinivasan
, and
D.
Viehland
,
Phys. Status Solidi RRL
12
,
1800043
(
2018
).
26.
C.
Tu
,
C.
Dong
,
Z.
Chu
,
H.
Chen
,
X.
Liang
, and
N. X.
Sun
,
Appl. Phys. Lett.
113
,
262904
(
2018
).
27.
J.
Zhai
,
J.
Gao
,
C.
De Vreugd
,
J.
Li
,
D.
Viehland
,
A. V.
Filippov
,
M. I.
Bichurin
,
D. V.
Drozdov
,
G. A.
Semenov
, and
S. X.
Dong
,
Eur. Phys. J. B
71
,
383
(
2009
).
28.
C.-W.
Nan
,
M. I.
Bichurin
,
S.
Dong
,
D.
Viehland
, and
G.
Srinivasan
,
J. Appl. Phys.
103
,
031101
(
2008
).
29.
T.
Wu
,
R.
Lu
,
A.
Gao
,
C.
Tu
,
T.
Manzaneque
, and
S.
Gong
, in
IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS)
(
IEEE
,
2019
), pp.
887
890
.
30.
S.
Shao
,
Z.
Luo
, and
T.
Wu
,
IEEE Electron Device Lett.
42
,
1378
(
2021
).
You do not currently have access to this content.