The thin film bulk acoustic resonator (FBAR) has emerged as a promising choice for liquid sensors because of its high frequency and sensitivity. To investigate the potential of FBAR devices working as the liquid sensors, we study the operating law of FBAR in liquid environments and explore the different loading effects of liquid on the shear mode and longitudinal mode. By analyzing the device and liquid interactions, we modify the Mason model of FBAR in the liquid environment. Subsequently, the influence of the piezoelectric film with different tilt angles and liquids on the characteristics of FBAR is discussed. We also prepared Sc0.2Al0.8N film-based FBAR to confirm the influence of different liquid environments on the resonant performances. The results show that the frequency drift of FBAR in the shear mode is related to density and viscosity of liquid, and the frequency drift of FBAR in the longitudinal mode is related to bulk modulus and density of liquid. The resonant frequency of FBAR in the shear mode is more sensitive with glycerol solution than that of FBAR in the longitudinal mode. This work can provide a research basis for the application of FBAR liquid sensors.

1.
F.
Zhang
,
C.
Chen
,
S.
Dou
,
H.
Zhou
,
J.
Yang
, and
D.
Wang
,
Appl. Phys. Lett.
113
(
20
),
203502
(
2018
).
2.
W. C.
Xu
,
J.
Appel
, and
J.
Chae
,
J. Microelectromech. Syst.
21
(
2
),
302
307
(
2012
).
3.
H.
Zhang
,
M. S.
Marma
,
E. S.
Kim
,
C. E.
Mckenna
, and
M. E.
Thompson
,
J. Micromech. Microeng.
15
(
10
),
1911
(
2005
).
4.
M. L.
Zhang
,
W. W.
Cui
,
X. J.
Chen
,
C.
Wang
, and
W.
Pang
,
J. Micromech. Microeng.
25
(
2
),
025002
(
2015
).
5.
Z.
Zhao
,
B.
Wang
,
Z.
Qian
,
I.
Kuznetsova
, and
Y. K.
Yong
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
67
(
11
),
2402
2412
(
2020
).
6.
G. J.
Gao
,
M. X.
Deng
,
M. L.
Li
, and
J. F.
Pei
,
Sci. China
57
(
10
),
1840
1847
(
2014
).
7.
S.
Yoon
,
M. G.
Kim
,
C. T.
Chiu
,
J. Y.
Hwang
,
H. H.
Kim
, and
Y.
Wang
,
Sci. Rep.
6
(
1
),
20477
(
2016
).
8.
H. F.
Zhang
,
J. A.
Turner
, and
J. A.
Kosinski
,
Integr. Ferroelectr.
113
,
95
108
(
2010
).
9.
M.
Nirschl
,
M.
Schreiter
, and
J.
Voros
,
Sens. Actuators A
165
(
2
),
415
421
(
2011
).
10.
M.
Link
,
J.
Weber
,
M.
Schreiter
,
W.
Wersing
,
O.
Elmazria
, and
P.
Alnot
,
Sens. Actuators B
121
(
2
),
372
378
(
2007
).
11.
A. J.
Flewitt
,
J. K.
Luo
,
Y. Q.
Fu
,
L.
Garcia-Gancedo
,
X. Y.
Du
, and
J. R.
Lu
,
J. Non-Newtonian Fluid Mech.
228
,
96
96
(
2016
).
12.
D.
Chen
,
S. R.
Song
,
J. L.
Ma
,
Z.
Zhang
,
P.
Wang
,
W. H.
Liu
, and
Q. Q.
Guo
,
Biosens. Bioelectron.
91
,
465
471
(
2017
).
13.
Z. X.
Zhang
,
Y. Y.
Wang
,
H. X.
Zhang
, and
Z. F.
Tang
,
Small
13
(
18
),
1602962
(
2017
).
14.
P.
Sun
,
Y. R.
Chen
,
T. T.
Tang
,
J.
Shen
,
X.
Liu
,
X. M.
Yang
, and
C.
Gao
,
Mater. Express
10
(
9
),
1477
1483
(
2020
).
15.
A. A.
Shirakawa
,
J. M.
Pham
,
P.
Jarry
, and
E.
Kerherve
,
Int. J. RF Microw. Comput. Aided Eng.
17
(
1
),
115
122
(
2007
).
16.
M.
Demiguel-Ramos
,
J.
Olivares
,
Clement
,
M.
Clement
, and
T.
Mirea
,
IEEE Sens. J.
2014
,
966
969
(
2014
), see https://ieeexplore.ieee.org/abstract/document/6985163.
17.
L. F.
Qin
and
Q. M.
Chen
,
J. Appl. Phys.
107
(
11
),
114102
(
2010
).
18.
L. F.
Qin
,
Q. M.
Chen
,
H. B.
Cheng
, and
Q. M.
Wang
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
(
8
),
1840
1853
(
2010
).
19.
A. G.
Every
,
Wave Motion
9
(
6
),
493
497
(
1987
).
20.
H. F.
Zhang
and
Y. Y.
Bao
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
(
3
),
525
534
(
2014
).
21.
Y. C.
Chang
,
Y. C.
Chen
, and
C. C.
Cheng
,
Mater.
14
(
23
),
7377
(
2021
).
22.
O. L.
Adbelkarim
and
M. A.
Elgawady
,
J. Bridge Eng.
20
(
8
),
B4014005
(
2015
).
23.
M. Y.
Zhang
,
Z.
Zhao
,
L. D.
Du
, and
Z.
Fang
,
J. Micromech. Microeng.
27
(
4
),
045004
(
2017
).
24.
Y. R.
Chen
,
P.
Sun
,
C.
Gao
,
T.
Yang
, and
Q.
Huang
,
Mater. Express
10
(
1
),
53
61
(
2020
).
25.
J. F.
Rosenbaum
,
Bulk Acoustic Wave Theory and Devices
(
Artech House
,
1988
).
26.
T. W.
Schneider
and
S. J.
Martin
,
Anal. Chem.
67
(
18
),
3324
3335
(
1995
).
27.
L. F.
Qin
,
Q. M.
Chen
,
H. B.
Cheng
,
Q.
Chen
,
J. F.
Li
, and
Q. M.
Wang
,
J. Appl. Phys.
110
(
9
),
094511
(
2011
).
28.
G.
Barmeir
,
Basics of Fluid Mechanics
(
DSpace
,
2013
).
29.
K. C.
Kwon
and
S.
Pallerla
,
Chem. Eng. Commun.
183
,
71
97
(
2000
).
30.
T.
Mirea
,
J.
Olivares
,
M.
Clement
, and
E.
Iborra
,
Sens. Actuators A
289
,
87
93
(
2019
).
31.
R.
Bechmann
,
J. Acoust. Soc. Am. 28
(
3)
,
347
350
(
1956
).
32.
A.
Ballato
,
J.
Kosinski
,
T.
Lukaszek
,
M.
Mizan
,
R.
McGowan
, and
K.
Klohn
, in
IEEE Symposium on Ultrasonics
(IEEE,
1990
), see https://ieeexplore.ieee.org/abstract/document/171427/authors#authors.
33.
R.
Bechmann
,
Phys. Rev.
110
,
1060
(
1958
).
34.
B. A.
Griffin
,
M. D.
Williams
,
G.
Wang
,
B. V.
Sankar
,
L. N.
Cattafesta
, and
M.
Sheplak
,
J. Micromech. Microeng.
27
,
045017
(
2017
).
You do not currently have access to this content.