Highly conductive argyrodite electrolytes are considered to be one of the most prospective solid electrolytes for all-solid-state batteries. However, poor electrochemical compatibility with a Li anode restrains their application. Herein, oxygen doping is adopted to improve the chemical and electrochemical performance of the argyrodite electrolyte. Meanwhile, the Cl/S2− ratio is increased to enhance the lithium ionic conductivity. The resultant Li6.05PS4.9O0.1Cl1.05 electrolyte exhibits a high conductivity of 7.49 mS cm−1. Benefitting from the stable Li3OCl formed at the electrolyte/Li interface and the low electronic conductivity arising from the oxygen doping, a Li6.05PS4.9O0.1Cl1.05 electrolyte shows excellent interfacial stability and lithium dendrites suppression capability. A Li/Li6.05PS4.9O0.1Cl1.05/Li cell can maintain stable Li plating/stripping for 13 000 h at 0.1 mA cm−2. Moreover, a high critical current density up to 1.3 mA cm−2 of Li6.05PS4.9O0.1Cl1.05 is realized. Consequently, the LiCoO2/Li6.05PS4.9O0.1Cl1.05/Li batteries achieve remarkable better cycling stability than that using pristine Li6PS5Cl, possessing a reversible capacity of 104.6 mAh g−1 at 1C with a capacity retention of 86.7% after 300 cycles.

1.
S.
Zhang
,
S.
Li
, and
Y.
Lu
,
eScience
1
(
2
),
163
(
2021
).
2.
Y.
Guo
,
S.
Wu
,
Y.-B.
He
,
F.
Kang
,
L.
Chen
,
L.
Hong
, and
Q.-H.
Yang
,
eScience
2
(
2
),
138
(
2022
).
3.
X.
Bai
,
Y.
Duan
,
W.
Zhuang
,
R.
Yang
, and
J.
Wang
,
J. Mater. Chem. A
8
(
48
),
25663
(
2020
).
4.
J.
Wu
,
S.
Liu
,
F.
Han
,
X.
Yao
, and
C.
Wang
,
Adv. Mater.
33
,
2000751
(
2021
).
5.
S.
Chen
,
D.
Xie
,
G.
Liu
,
J. P.
Mwizerwa
,
Q.
Zhang
,
Y.
Zhao
,
X.
Xu
, and
X.
Yao
,
Energy Storage Mater.
14
,
58
(
2018
).
6.
J.
Wu
,
L.
Shen
,
Z.
Zhang
,
G.
Liu
,
Z.
Wang
,
D.
Zhou
,
H.
Wan
,
X.
Xu
, and
X.
Yao
,
Electrochem. Energy Rev.
4
(1),
101
(
2020
).
7.
M.
Gao
,
X.
Wu
,
J.
Wang
,
C.
Yu
,
D.
Yan
,
H. Y.
Yang
,
H.
Zhao
, and
Y.
Bai
,
Appl. Phys. Lett.
120
(
19
),
191902
(
2022
).
8.
M.
Hou
,
L.
Feng
,
K.
Chen
,
Y.
Dai
, and
D.
Xue
,
Nanotechnol.
31
,
132003
(
2020
).
9.
D.
Lee
,
H.
Lee
,
T.
Song
, and
U.
Paik
,
Adv. Energy Mater
12
(
27
),
1
(2022).
10.
B. A.
Boukamp
and
R. A.
Huggins
,
Phys. Lett. A
72
(
6
),
464
(
1979
).
11.
A.
Unemoto
,
M.
Matsuo
, and
S.
Orimo
,
Adv. Funct. Mater.
24
(
16
),
2267
(
2014
).
12.
L.
Xiaona
,
J.
Liang
,
X.
Yang
,
K. R.
Adair
,
C.
Wang
,
F.
Zhao
, and
X.
Sun
,
Energy Environ. Sci.
13
(
5
),
1429
(
2020
).
13.
K.
Kaup
,
K.
Bishop
,
A.
Assoud
,
J.
Liu
, and
L. F.
Nazar
,
J. Am. Chem. Soc.
143
(
18
),
6952
(
2021
).
14.
Y.
Kato
,
S.
Hori
,
T.
Saito
,
K.
Suzuki
,
M.
Hirayama
,
A.
Mitsui
,
M.
Yonemura
,
H.
Iba
, and
R.
Kanno
,
Nat. Energy
1
(
4
),
16030
(
2016
).
15.
S. V.
Patel
,
S.
Banerjee
,
H.
Liu
,
P.
Wang
,
P.-H.
Chien
,
X.
Feng
,
J.
Liu
,
S. P.
Ong
, and
Y.-Y.
Hu
,
Chem. Mater.
33
(
4
),
1435
(
2021
).
16.
L.
Zhou
,
A.
Assoud
,
Q.
Zhang
,
X.
Wu
, and
L. F.
Nazar
,
J. Am. Chem. Soc.
141
(
48
),
19002
(
2019
).
17.
C.
Yu
,
F.
Zhao
,
J.
Luo
,
L.
Zhang
, and
X.
Sun
,
Nano Energy
83
,
105858
(
2021
).
18.
S.
Liu
,
L.
Zhou
,
J.
Han
,
K.
Wen
,
S.
Guan
,
C.
Xue
,
Z.
Zhang
,
B.
Xu
,
Y.
Lin
,
Y.
Shen
,
L.
Li
, and
C.
Nan
,
Adv. Energy Mater.
12
(
25
),
2200660
(
2022
).
19.
A.
Hayashi
,
Y.
Nishio
,
H.
Kitaura
, and
M.
Tatsumisago
,
Electrochem. Commun.
10
(
12
),
1860
(
2008
).
20.
R. P.
Rao
and
S.
Adams
,
Phys. Status Solidi A
208
(
8
),
1804
(
2011
).
21.
P. R.
Rayavarapu
,
N.
Sharma
,
V. K.
Peterson
, and
S.
Adams
,
J. Solid State Electrochem.
16
(
5
),
1807
(
2012
).
22.
M. A.
Kraft
,
S. P.
Culver
,
M.
Calderon
,
F.
Bocher
,
T.
Krauskopf
,
A.
Senyshyn
,
C.
Dietrich
,
A.
Zevalkink
,
J.
Janek
, and
W. G.
Zeier
,
J. Am. Chem. Soc.
139
(
31
),
10909
(
2017
).
23.
A.
Gautam
,
M.
Ghidiu
,
E.
Suard
,
M. A.
Kraft
, and
W. G.
Zeier
,
ACS Appl. Energy Mater.
4
(
7
),
7309
(
2021
).
24.
Z.
Zhang
,
L.
Wu
,
D.
Zhou
,
W.
Weng
, and
X.
Yao
,
Nano Lett.
21
(
12
),
5233
(
2021
).
25.
P.
Adeli
,
J. D.
Bazak
,
K. H.
Park
,
I.
Kochetkov
,
A.
Huq
,
G. R.
Goward
, and
L. F.
Nazar
,
Angew. Chem., Int. Ed.
58
(
26
),
8681
(
2019
).
26.
Y. L.
Chuang Yu
,
M.
Willans
,
K. R.
Yang Zhao
,
F.
Adair
,
W. L.
Zhao
,
S.
Deng
,
J.
Liang
,
M. N.
Banis
,
R. L.
Huang
,
H.
Li Zhang
,
R.
Yang
,
S.
Lu
,
Y.
Huang
, and
X.
Sun
,
Nano Energy
69
,
104396
(
2020
).
27.
A.
Seo
,
A.
Meyer
,
S.
Shrestha
,
M.
Wang
,
X.
Xiao
, and
Y.-T.
Cheng
,
Appl. Phys. Lett.
120
(
21
),
211602
(
2022
).
28.
K. H.
Park
,
Q.
Bai
,
D. H.
Kim
,
D. Y.
Oh
,
Y.
Zhu
,
Y.
Mo
, and
Y. S.
Jung
,
Adv. Energy Mater.
8
(
18
),
1800035
(
2018
).
29.
Z.
Zhang
,
Y.
Shao
,
B.
Lotsch
,
Y.-S.
Hu
,
H.
Li
,
J.
Janek
,
L. F.
Nazar
,
C.-W.
Nan
,
J.
Maier
,
M.
Armand
, and
L.
Chen
,
Energy Environ. Sci.
11
(
8
),
1945
(
2018
).
30.
T.
Cheng
,
B. V.
Merinov
,
S.
Morozov
, and
W. A.
Goddard
,
ACS Energy Lett.
2
(
6
),
1454
(
2017
).
31.
S.
Wenzel
,
S.
Randau
,
T.
Leichtweiß
,
D. A.
Weber
,
J.
Sann
,
W. G.
Zeier
, and
J.
Janek
,
Chem. Mater.
28
(
7
),
2400
(
2016
).
32.
J.
Kasemchainan
,
S.
Zekoll
,
D.
Spencer Jolly
,
Z.
Ning
,
G. O.
Hartley
,
J.
Marrow
, and
P. G.
Bruce
,
Nat. Mater.
18
(
10
),
1105
(
2019
).
33.
Y. C.
Tao
,
S. J.
Chen
,
D.
Liu
,
G.
Peng
,
X. Y.
Yao
, and
X. X.
Xu
,
J. Electrochem. Soc.
163
(
2
),
A96
(
2016
).
34.
G.
Liu
,
D.
Xie
,
X.
Wang
,
X.
Yao
,
S.
Chen
,
R.
Xiao
,
H.
Li
, and
X.
Xu
,
Energy Storage Mater.
17
,
266
(
2019
).
35.
D.
Xie
,
S.
Chen
,
Z.
Zhang
,
J.
Ren
,
L.
Yao
,
L.
Wu
,
X.
Yao
, and
X.
Xu
,
J. Power Sources
389
,
140
(
2018
).
36.
Z.
Zhang
,
L.
Zhang
,
X.
Yan
,
H.
Wang
,
Y.
Liu
,
C.
Yu
,
X.
Cao
,
L.
van Eijck
, and
B.
Wen
,
J. Power Sources
410–411
,
162
(
2019
).
37.
T.
Chen
,
L.
Zhang
,
Z.
Zhang
,
P.
Li
,
H.
Wang
,
C.
Yu
,
X.
Yan
,
L.
Wang
, and
B.
Xu
,
ACS Appl. Mater. Interfaces
11
(
43
),
40808
(
2019
).
38.
H.
Xu
,
Y.
Yu
,
Z.
Wang
, and
G.
Shao
,
J. Mater. Chem. A
7
(
10
),
5239
(
2019
).
39.
F.
Han
,
A. S.
Westover
,
J.
Yue
,
X.
Fan
,
F.
Wang
,
M.
Chi
,
D. N.
Leonard
,
N. J.
Dudney
,
H.
Wang
, and
C.
Wang
,
Nat. Energy
4
(
3
),
187
(
2019
).
40.
C.
Yu
,
L.
van Eijck
,
S.
Ganapathy
, and
M.
Wagemaker
,
Electrochim. Acta
215
,
93
(
2016
).
41.
S.
Yubuchi
,
S.
Teragawa
,
K.
Aso
,
K.
Tadanaga
,
A.
Hayashi
, and
M.
Tatsumisago
,
J. Power Sources
293
,
941
(
2015
).
42.
H.
Wang
,
C.
Yu
,
S.
Ganapathy
,
E. R. H.
van Eck
,
L.
van Eijck
, and
M.
Wagemaker
,
J. Power Sources
412
,
29
(
2019
).
43.
H.
Wan
,
J. P.
Mwizerwa
,
X.
Qi
,
X.
Xu
,
H.
Li
,
Q.
Zhang
,
L.
Cai
,
Y. S.
Hu
, and
X.
Yao
,
ACS Appl. Mater. Interfaces
10
(
15
),
12300
(
2018
).
44.
X.
Lu
,
J. W.
Howard
,
A.
Chen
,
J.
Zhu
,
S.
Li
,
G.
Wu
,
P.
Dowden
,
H.
Xu
,
Y.
Zhao
, and
Q.
Jia
,
Adv. Sci.
3
(
3
),
1500359
(
2016
).
45.
N. W.
Li
,
Y. X.
Yin
,
C. P.
Yang
, and
Y. G.
Guo
,
Adv. Mater.
28
(
9
),
1853
(
2016
).

Supplementary Material

You do not currently have access to this content.