In this article, systematic comparison of the safety performance of LiNixMnyCozO2 is made to find a balance among nickel content, energy density, and thermal stability. Three kinds of LiNixMnyCozO2 cathodes with different nickel contents are charged to different cut-off voltages from 4.2 to 4.6 V (vs Li+/Li) to obtain different energy densities, and their safety is evaluated through differential scanning calorimetry. Different characteristic temperatures are proposed to describe the cathode safety comprehensively and a relationship between energy density and thermal stability is established. It is found that cathode with lower nickel content (LiNi0.5Mn0.3Co0.2O2 and LiNi0.6 Mn0.2Co0.2O2) charging to high voltage exhibits better thermal stability compared to high nickel cathode (LiNi0.8Mn0.1Co0.1O2) at a conventional voltage. Numerical simulation based on a lumped thermal model is also performed to predict the real thermal behaviors of batteries using different cathodes. The discussion of the impact of the cut-off voltage for NMC cathodes provides a new dimension to further improve the comprehensiveness of battery material safety database and a new viewpoint on the trade-off between cathode energy density and safety.

1.
A.
Yoshino
, “
The birth of the lithium-ion battery
,”
Angew. Chem., Int. Ed.
51
,
5798
(
2012
).
2.
J. B.
Goodenough
, “
How we made the Li-ion rechargeable battery
,”
Nat. Electron.
1
,
204
(
2018
).
3.
J. B.
Goodenough
and
Y.
Kim
, “
Challenges for rechargeable Li batteries
,”
Chem. Mater.
22
,
587
(
2010
).
4.
B.
Dunn
,
H.
Kamath
, and
J. M.
Tarascon
, “
Electrical energy storage for the grid: A battery of choices
,”
Science
334
,
928
(
2011
).
5.
M.
Armand
and
J.-M.
Tarascon
, “
Building better batteries
,”
Nature
451
,
652
(
2008
).
6.
J.-M.
Tarascon
and
M.
Armand
, “
Issues and challenges facing rechargeable lithium batteries
,”
Nature
414
,
359
(
2001
).
7.
H.
Maleki
,
G. P.
Deng
,
A.
Anani
, and
J.
Howard
, “
Thermal stability studies of Li-ion cells and components
,”
J. Electrochem. Soc.
146
,
3224
(
1999
).
8.
R.
Spotnitz
and
J.
Franklin
, “
Abuse behavior of high-power, lithium-ion cells
,”
J. Power Sources
113
,
81
(
2003
).
9.
Q.
Wang
,
P.
Ping
,
X.
Zhao
,
G.
Chu
,
J.
Sun
, and
C.
Chen
, “
Thermal runaway caused fire and explosion of lithium ion battery
,”
J. Power Sources
208
,
210
(
2012
).
10.
X.
Feng
,
M.
Ouyang
,
X.
Liu
,
L.
Lu
,
Y.
Xia
, and
X.
He
, “
Thermal runaway mechanism of lithium ion battery for electric vehicles: A review
,”
Energy Storage Mater.
10
,
246
(
2018
).
11.
S.
Zheng
,
L.
Wang
,
X.
Feng
, and
X.
He
, “
Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries
,”
J. Power Sources
378
,
527
(
2018
).
12.
H. J.
Noh
,
S.
Youn
,
C. S.
Yoon
, and
Y. K.
Sun
, “
Comparison of the structural and electrochemical properties of layered LiNixCoyMnzO2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0. 85) cathode material lithium-ion batteries
,”
J. Power Sources
233
,
121
(
2013
).
13.
L.
Ma
,
M. Y.
Nie
,
J.
Xia
, and
J. R.
Dahn
, “
A systematic study on the reactivity of different grades of charged LiNixCoyMnzO2 with electrolyte at elevated temperatures using accelerating rate calorimetry
,”
J. Power Sources
327
,
145
(
2016
).
14.
Y.
Wang
,
D. S.
Ren
,
X. N.
Feng
,
L.
Wang
, and
M. G.
Ouyang
, “
Thermal kinetics comparison of delithiated LiNixCoyMn1-x-yO2 cathodes
,”
J. Power Sources
514
,
230582
(
2021
).
15.
S. K.
Jung
,
H.
Gwon
,
J.
Hong
,
K. Y.
Park
,
D. H.
Seo
,
H.
Kim
,
J.
Hyun
,
W.
Yang
, and
K.
Kang
, “
Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries
,”
Adv. Energy Mater.
4
,
1300787
(
2014
).
16.
L.
David
,
K.
Dahlberg
,
D.
Mohanty
,
R. E.
Ruther
,
A.
Huq
,
M. F.
Chi
,
S. J.
An
,
C. Y.
Mao
,
D. M.
King
,
L.
Stevenson
, and
D. L.
Wood
, “
Unveiling the role of Al2O3 in preventing surface reconstruction during high-voltage cycling of lithium-ion batteries
,”
ACS Appl. Energy Mater.
2
,
1308
(
2019
).
17.
X. L.
Fan
and
C. S.
Wang
, “
High-voltage liquid electrolytes for Li batteries: Progress and perspectives
,”
Chem. Soc. Rev.
50
,
10486
(
2021
).
18.
Y.
Wang
,
Q. H.
Zhang
,
Z. C.
Xue
,
L. F.
Yang
,
J. Y.
Wang
,
F. Q.
Meng
,
Q. H.
Li
,
H. Y.
Pan
,
J. N.
Zhang
,
Z.
Jiang
,
W. L.
Yang
,
X. Q.
Yu
,
L.
Gu
, and
H.
Li
, “
An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances
,”
Adv. Energy Mater.
10
,
2001413
(
2020
).
19.
Y. T.
Su
,
S. H.
Cui
,
Z. Q.
Zhuo
,
W. L.
Yang
,
X. W.
Wang
, and
F.
Pan
, “
Enhancing the high-voltage cycling performance of LiNi0.5Mn0.3Co0.2O2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al2O3
,”
ACS Appl. Mater. Interfaces
7
,
25105
(
2015
).
20.
Y.
Guo
,
S. C.
Wu
,
Y.-B.
He
,
F. Y.
Kang
,
L. Q.
Chen
,
H.
Li
, and
Q.-H.
Yang
, “
Solid-state lithium batteries: Safety and prospects
,”
eScience
2
,
138
(
2022
).
21.
R. S.
Chen
,
Q. H.
Li
,
X. Q.
Yu
,
L. Q.
Chen
, and
H.
Li
, “
Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces
,”
Chem. Rev.
120
,
6820
(
2020
).
22.
J.-H.
Kim
,
K.-J.
Park
,
S. J.
Kim
,
C. S.
Yoon
, and
Y.-K.
Sun
, “
A method of increasing the energy density of layered Ni-rich Li[Ni1 − 2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2)
,”
J. Mater. Chem. A
7
,
2694
(
2019
).
23.
X. G.
Sun
,
C. J.
Jafta
,
S. S.
Tan
,
A.
Borisevich
,
R. B.
Gupta
, and
M. P.
Paranthaman
, “
Facile surface coatings for performance improvement of NMC811 battery cathode material
,”
J. Electrochem. Soc.
169
,
020565
(
2022
).
24.
A.
Manthiram
,
J. C.
Knight
,
S. T.
Myung
,
S. M.
Oh
, and
Y. K.
Sun
, “
Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives
,”
Adv. Energy Mater.
6
,
1501010
(
2016
).
25.
Y.
Koyama
,
I.
Tanaka
,
H.
Adachi
,
Y.
Makimura
, and
T.
Ohzuku
, “
Crystal and electronic structures of superstructural Li1−xCo1/3Ni1/3Mn1/3O2 (0 ≤ x ≤ 1)
,”
J. Power Sources
119–121
,
644
(
2003
).
26.
S. M.
Bak
,
E. Y.
Hu
,
Y. N.
Zhou
,
X. Q.
Yu
,
S. D.
Senanayake
,
S. J.
Cho
,
K. B.
Kim
,
K. Y.
Chung
,
X. Q.
Yang
, and
K. W.
Nam
, “
Structural changes and thermal stability of charged LiNixCoyMnzO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy
,”
ACS Appl. Mater. Interfaces
6
,
22594
(
2014
).
27.
K. W.
Nam
,
S. M.
Bak
,
E. Y.
Hu
,
X. Q.
Yu
,
Y. N.
Zhou
,
X. J.
Wang
,
L. J.
Wu
,
Y. M.
Zhu
,
K. Y.
Chung
, and
X. Q.
Yang
, “
Combining in situ synchrotron x-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries
,”
Adv. Funct. Mater.
23
,
1047
(
2013
).
28.
S.-M.
Bak
,
K.-W.
Nam
,
W.
Chang
,
X.
Yu
,
E.
Hu
,
S.
Hwang
,
E. A.
Stach
,
K.-B.
Kim
,
K. Y.
Chung
, and
X.-Q.
Yang
, “
Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials
,”
Chem. Mater.
25
,
337
(
2013
).
29.
C. P.
Liang
,
F. T.
Kong
,
R. C.
Longo
,
S.
Kc
,
J. S.
Kim
,
S.
Jeon
,
S.
Choi
, and
K.
Cho
, “
Unraveling the origin of instability in Ni-rich LiNi1−2xCoxMnxO2 (NCM) cathode materials
,”
J. Phys. Chem. C
120
,
6383
(
2016
).
30.
J.
Jiang
and
J. R.
Dahn
, “
ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes
,”
Electrochem. Commun.
6
,
39
(
2004
).
31.
W. S.
Yoon
,
K. W.
Nam
,
D.
Jang
,
K. Y.
Chung
,
J.
Hanson
,
J. M.
Chen
, and
X. Q.
Yang
, “
Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD
,”
J. Power Sources
217
,
128
(
2012
).
32.
D. D.
MacNeil
and
J. R.
Dahn
, “
Can an electrolyte for lithium-ion batteries be too stable?
,”
J. Electrochem. Soc.
150
,
A21
(
2003
).
33.
Y.
Wu
,
X. N.
Feng
,
X.
Liu
,
X. F.
Wang
,
D. S.
Ren
,
L.
Wang
,
M.
Yang
,
Y. L.
Wang
,
W. F.
Zhang
,
Y. L.
Li
,
Y. J.
Zheng
,
L. G.
Lu
,
X. B.
Han
,
G. L.
Xu
,
Y.
Ren
,
Z. H.
Chen
,
J. T.
Chen
,
X. M.
He
,
K.
Amine
, and
M. G.
Ouyang
, “
In-built ultraconformal interphases enable high-safety practical lithium batteries
,”
Energy Storage Mater.
43
,
248
(
2021
).
34.
J. H.
Sun
,
B. B.
Mao
, and
Q. S.
Wang
, “
Progress on the research of fire behavior and fire protection of lithium ion battery
,”
Fire Safety J.
120
,
103119
(
2021
).
35.
D. S.
Ren
,
X.
Liu
,
X. N.
Feng
,
L. G.
Lu
,
M. G.
Ouyang
,
J. Q.
Li
, and
X. M.
He
, “
Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components
,”
Appl. Energy
228
,
633
(
2018
).

Supplementary Material

You do not currently have access to this content.