The random micro-particle-embedded thin film is an inexpensive and scalable structure for radiative cooling (RC). However, current investigations on evaluating the performance of such films assume that the embedded particles are perfectly separated from each other. The particle agglomeration effects on the spectral characteristics of the film are dismissed. In this work, by comparing the spectral reflectivity and emissivity of a film composed of perfectly separated TiO2 particles, three-particle aggregations, five-particle aggregations, and ten-particle aggregations, we studied the particle agglomeration impacts on the performance of a disordered radiative cooling film with a thickness of 50 μm. The results show that the agglomeration suppresses the solar reflectivity of the particle-embedded film and harms the temperature drop and cooling power in RC applications. Therefore, particle agglomeration is intended to be industriously eliminated in the preparation of a random particle-embedded thin film for radiative cooling. The results in this paper provide a further explanation of the difference between the theoretical calculations and experimental measurements of the cooling performance of a particle-embedded RC film.

1.
S.
Catalanotti
,
V.
Cuomo
,
G.
Piro
,
D.
Ruggi
,
V.
Silvestrini
, and
G.
Troise
,
Sol. Energy
17
,
83
(
1975
).
2.
M. M.
Hossain
,
B.
Jia
, and
M.
Gu
,
Adv. Opt. Mater.
3
,
1047
(
2015
).
3.
B.
Zhao
,
G.
Pei
, and
A. P.
Raman
,
Appl. Phys. Lett.
117
,
163903
(
2020
).
4.
S.
Ishii
,
T. D.
Dao
, and
T.
Nagao
,
Appl. Phys. Lett.
117
,
013901
(
2020
).
5.
Z.
Cheng
,
H.
Han
,
F.
Wang
,
Y.
Yan
,
X.
Shi
,
H.
Liang
,
X.
Zhang
, and
Y.
Shuai
,
Nano Energy
89
,
106377
(
2021
).
6.
S.
Zeng
,
S.
Pian
,
M.
Su
,
Z.
Wang
,
M.
Wu
,
X.
Liu
,
M.
Chen
,
Y.
Xiang
,
J.
Wu
,
M.
Zhang
,
Q.
Cen
,
Y.
Tang
,
X.
Zhou
,
Z.
Huang
,
R.
Wang
,
A.
Tunuhe
,
X.
Sun
,
Z.
Xia
,
M.
Tian
,
M.
Chen
,
X.
Ma
,
L.
Yang
,
J.
Zhou
,
H.
Zhou
,
Q.
Yang
,
X.
Li
,
Y.
Ma
, and
G.
Tao
,
Science
373
,
692
(
2021
).
7.
S.
Wang
,
T.
Jiang
,
Y.
Meng
,
R.
Yang
,
G.
Tan
, and
Y.
Long
,
Science
374
,
1501
(
2021
).
8.
J.
Li
,
Y.
Liang
,
W.
Li
,
N.
Xu
,
B.
Zhu
,
Z.
Wu
,
X.
Wang
,
S.
Fan
,
M.
Wang
, and
J.
Zhu
,
Sci. Adv.
8
,
eabj9756
(
2022
).
9.
X.
Ao
,
B.
Li
,
B.
Zhao
,
M.
Hu
,
H.
Ren
,
H.
Yang
,
J.
Liu
,
J.
Cao
,
J.
Feng
,
Y.
Yang
,
Z.
Qi
,
L.
Li
,
C.
Zou
, and
G.
Pei
,
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2120557119
(
2022
).
10.
M.
Chen
,
D.
Pang
, and
H.
Yan
,
J. Mater. Chem. C
10
,
8329
(
2022
).
11.
A. P.
Raman
,
M. A.
Anoma
,
L.
Zhu
,
E.
Rephaeli
, and
S.
Fan
,
Nature
515
,
540
(
2014
).
12.
C.
Zou
,
G.
Ren
,
M. M.
Hossain
,
S.
Nirantar
,
W.
Withayachumnankul
,
T.
Ahmed
,
M.
Bhaskaran
,
S.
Sriram
,
M.
Gu
, and
C.
Fumeaux
,
Adv. Opt. Mater.
5
,
1700460
(
2017
).
13.
Y.
Zhai
,
Y.
Ma
,
S. N.
David
,
D.
Zhao
,
R.
Lou
,
G.
Tan
,
R.
Yang
, and
X.
Yin
,
Science
355
,
1062
(
2017
).
14.
A. R.
Gentle
and
G. B.
Smith
,
Nano Lett.
10
,
373
(
2010
).
15.
J.
Mandal
,
Y.
Fu
,
A. C.
Overvig
,
M.
Jia
,
K.
Sun
,
N. N.
Shi
,
H.
Zhou
,
X.
Xiao
,
N.
Yu
, and
Y.
Yang
,
Science
362
,
315
(
2018
).
16.
J.
Song
,
J.
Seo
,
J.
Han
,
J.
Lee
, and
B. J.
Lee
,
Appl. Phys. Lett.
117
,
094101
(
2020
).
17.
Y.
Liu
,
Y.
Tian
,
X.
Liu
,
F.
Chen
,
A.
Caratenuto
, and
Y.
Zheng
,
Appl. Phys. Lett.
120
,
171704
(
2022
).
18.
B. R.
Mishra
,
S.
Sundaram
,
N. J.
Varghese
, and
K.
Sasihithlu
,
AIP Adv.
11
,
105218
(
2021
).
19.
D.
Li
,
X.
Liu
,
W.
Li
,
Z.
Lin
,
B.
Zhu
,
Z.
Li
,
J.
Li
,
B.
Li
,
S.
Fan
,
J.
Xie
, and
J.
Zhu
,
Nat. Nanotechnol.
16
,
153
(
2021
).
20.
B.
Xiang
,
R.
Zhang
,
Y.
Luo
,
S.
Zhang
,
L.
Xu
,
H.
Min
,
S.
Tang
, and
X.
Meng
,
Nano Energy
81
,
105600
(
2021
).
21.
S.
Atiganyanun
,
J. B.
Plumley
,
S. J.
Han
,
K.
Hsu
,
J.
Cytrynbaum
,
T. L.
Peng
,
S. M.
Han
, and
S. E.
Han
,
ACS Photonics
5
,
1181
(
2018
).
22.
J.
Peoples
,
X.
Li
,
Y.
Lv
,
J.
Qiu
,
Z.
Huang
, and
X.
Ruan
,
Int. J. Heat Mass Transfer
131
,
487
(
2019
).
23.
M.
Chen
,
D.
Pang
,
J.
Mandal
,
X.
Chen
,
H.
Yan
,
Y.
He
,
N.
Yu
, and
Y.
Yang
,
Nano Lett.
21
,
1412
(
2021
).
24.
A.
Harrison
and
M. J. S. E.
Walton
,
Sol. Energy
20
,
185
(
1978
).
25.
Y.
Liu
,
S.
Son
,
D.
Chae
,
P.-H.
Jung
, and
H.
Lee
,
Sol. Energy Mater. Sol. Cells
213
,
110561
(
2020
).
26.
X.
Chen
,
M.
He
,
S.
Feng
,
Z.
Xu
,
H.
Peng
,
S.
Shi
,
C.
Liu
, and
Y.
Zhou
,
Opt. Mater.
120
,
111431
(
2021
).
27.
H.
Bao
,
C.
Yan
,
B.
Wang
,
X.
Fang
,
C. Y.
Zhao
, and
X.
Ruan
,
Sol. Energy Mater. Sol. Cells
168
,
78
(
2017
).
28.
Y.
Zhang
,
X.
Tan
,
G.
Qi
,
X.
Yang
,
D.
Hu
,
P.
Fyffe
, and
X.
Chen
,
Sol. Energy Mater. Sol. Cells
229
,
111129
(
2021
).
29.
X.
Sun
,
Y.
Sun
,
Z.
Zhou
,
M. A.
Alam
, and
P.
Bermel
,
Nanophotonics
6
,
997
(
2017
).
30.
L.
Ma
,
C.
Wang
, and
L.
Liu
,
Opt. Express
28
,
28252
(
2020
).
31.
C.
Sun
,
C.
Qin
,
H.
Zhai
,
B.
Zhang
, and
X.
Wu
,
Nanomaterials
11
,
2722
(
2021
).
32.
A.
Zhang
,
F.
Wang
,
Z.
Cheng
,
H.
Liang
, and
X.
Shi
,
Int. J. Heat Mass Transfer
186
,
122488
(
2022
).
33.
J.
Song
,
J.
Qin
,
J.
Qu
,
Z.
Song
,
W.
Zhang
,
X.
Xue
,
Y.
Shi
,
T.
Zhang
,
W.
Ji
,
R.
Zhang
,
H.
Zhang
,
Z.
Zhang
, and
X.
Wu
,
Sol. Energy Mater. Sol. Cells
130
,
42
(
2014
).
34.
M.
Baneshi
,
H.
Gonome
,
A.
Komiya
, and
S.
Maruyama
,
Sol. Energy
86
,
200
(
2012
).
35.
E. S.
Thiele
and
R. H.
French
,
Adv. Mater.
10
,
1271
(
1998
).
36.
R.
Levinson
,
P.
Berdahl
, and
H.
Akbari
,
Sol. Energy Mater. Sol. Cells
89
,
351
(
2005
).
37.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
1998
).
38.
M.
Baneshi
,
S.
Maruyama
,
H.
Nakai
, and
A.
Komiya
,
J. Quant. Spectrosc. Radiat. Transfer
110
,
192
(
2009
).
39.
W.
Liu
,
J.
Zhang
,
B.
Lei
,
H.
Ma
,
W.
Xie
, and
H.
Hu
,
Opt. Express
22
,
16178
(
2014
).
40.
E.
Rephaeli
,
A.
Raman
, and
S.
Fan
,
Nano Lett.
13
,
1457
(
2013
).

Supplementary Material

You do not currently have access to this content.