This paper presents an antenna-coupled non-linear vanadium dioxide (VO2) microbolometer operating in the non-linear metal–insulator transition (MIT) region with an ultra-high responsivity of 6.55 × 104 V/W. Sputtered VO2 films used in this device exhibit 104 times change in resistivity between the dielectric and conductive states. The VO2 microbolometer is coupled to a wideband dipole antenna operating at 31–55 GHz and a coplanar waveguide for probed measurement. To enhance the sensitivity, the sensor is suspended in air by micro-electro-mechanical systems process. The large thermal coefficient of resistance of VO2 is utilized by DC biasing the device in the MIT region. Measurements for the fabricated sensor were performed, and a high responsivity was demonstrated, owing to non-linear conductivity change in the transition region. The measured sensitivity is >102 times higher than the state-of-the-art sensors. In addition, the concept of utilizing the proposed VO2 sensor in a mmWave imager was demonstrated by the radiation pattern measurement of a 4 × 4 (16 elements) antenna-coupled VO2 sensor array. The results presented in this work reveal the initial step to employ VO2's MIT for a hyper-sensitive sensor in future mmWave sensing and imaging applications.

1.
M. K.
Sohn
,
H.
Singh
,
E.-M.
Kim
,
G. S.
Heo
,
S. W.
Choi
,
D. G.
Phyun
, and
D. J.
Kang
,
Appl. Phys. Lett.
120
(
17
),
173503
(
2022
).
2.
V.
Sanphuang
,
N.
Ghalichechian
,
N. K.
Nahar
, and
J. L.
Volakis
,
Appl. Phys. Lett.
107
(
25
),
253106
(
2015
).
3.
M.
Lust
,
S.
Chen
,
C. E.
Wilson
,
J.
Argo
,
V.
Doan-Nguyen
, and
N.
Ghalichechian
,
J. Appl. Phys.
127
(
20
),
205303
(
2020
).
4.
S. P.
Langley
,
Proc. Am. Acad. Arts Sci.
16
,
342
(
1880
).
5.
F.
Niklaus
,
C.
Vieider
, and
H.
Jakobsen
, in
MEMS/MOEMS Technologies and Applications III
(
SPIE
,
Beijing
,
2008
), Vol.
6836
, p.
68360D
.
6.
M. E.
MacDonald
and
E. N.
Grossman
,
IEEE Trans. Microwave Theory Techn.
43
(
4
),
893
(
1995
).
7.
M.
Moreno
,
R.
Jiménez
,
A.
Torres
, and
R.
Ambrosio
,
IEEE Trans. Electron Devices
62
(
7
),
2120
(
2015
).
8.
C. D.
Reintsema
,
E. N.
Grossman
, and
J. A.
Koch
, in
Infrared Technology and Applications XXV
(
International Society for Optics and Photonics
,
Orlando, FL
,
1999
), Vol.
3698
, p.
190
.
9.
A. H.
Lettington
,
D.
Dunn
,
M.
Attia
, and
I. M.
Blankson
,
J. Opt. A
5
(
4
),
S103
(
2003
).
10.
M. T.
Ahmad Beig
,
M.
Kumar
,
Y.
Sharma
, and
B. K.
Sharma
,
J. Phys.
2335
(
1
),
012005
(
2022
).
11.
R.
Appleby
,
D.
Gleed
,
R.
Anderton
, and
A.
Lettington
,
Opt. Eng.
32
(
6
),
1370
(
1993
).
12.
L.
Yujiri
,
M.
Shoucri
, and
P.
Moffa
,
IEEE Microwave Mag.
4
(
3
),
39
(
2003
).
13.
V. Y.
Zerov
and
V.
Malyarov
,
J. Opt. Technol.
68
(
12
),
939
(
2001
).
14.
A. R.
Luukanen
,
S.
Vaijaervi
, and
H.
Sipila
, in
Passive Millimeter-Wave Imaging Technology IV
(
SPIE
,
Orlando, FL
,
2000
), Vol.
4032
, p.
81
.
15.
I.
Kašalynas
,
R.
Venckevičius
,
L.
Minkevičius
,
A.
Sešek
,
F.
Wahaia
,
V.
Tamošiūnas
,
B.
Voisiat
,
D.
Seliuta
,
G.
Valušis
,
A.
Švigelj
, and
J.
Trontelj
,
Sensors
16
(
4
),
432
(
2016
).
16.
C.
Middleton
,
G.
Zummo
,
A.
Weeks
,
A.
Pergande
,
L.
Mirth
, and
G.
Boreman
, in
Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics
(
SPIE
,
Orlando, FL
,
2004
), Vol.
5410
, p.
745
.
17.
T.
Uchida
,
A.
Matsushita
, and
T.
Tachiki
,
IEEJ Trans. Electr. Electron. Eng.
13
(
6
),
876
(
2018
).
18.
S.
Yoneoka
,
M.
Liger
,
G.
Yama
,
R.
Schuster
,
F.
Purkl
,
J.
Provine
,
F. B.
Prinz
,
R. T.
Howe
, and
T. W.
Kenny
, in
2011 IEEE 24th International Conference on Micro Electro Mechanical Systems
(
IEEE
,
Cancun
,
2011
), p.
676
.
19.
W. A.
Radford
,
D. F.
Murphy
,
A.
Finch
,
A.
Kennedy
,
J.
Kojiro
,
M.
Ray
,
R.
Wyles
,
R.
Coda
,
E. A.
Moody
, and
S. T.
Baur
, in
Infrared Detectors and Focal Plane Arrays V
(
International Society for Optics and Photonics
,
San Diego, CA
,
1998
), Vol.
3379
, p.
22
.
20.
D.
Murphy
,
M.
Ray
,
J.
Wyles
,
C.
Hewitt
,
R.
Wyles
,
E.
Gordon
,
K.
Almada
,
T.
Sessler
,
S.
Baur
, and
D.
Van Lue
, in
Infrared Technology and Applications XXXIII
(
International Society for Optics and Photonics
,
Orlando, FL
,
2007
), Vol.
6542
, p.
65421Z
.
21.
V. Y.
Zerov
,
Y. V.
Kulikov
,
V.
Leonov
,
V.
Malyarov
,
I.
Khrebtov
, and
I.
Shaganov
,
J. Opt. Technol.
66
(
5
),
387
(
1999
).
22.
L.
De Almeida
,
G.
Deep
,
A.
Lima
,
I.
Khrebtov
,
V.
Malyarov
, and
H.
Neff
,
Appl. Phys. Lett.
85
(
16
),
3605
(
2004
).
23.
S.
Chen
,
B.
Ghassemiparvin
, and
N.
Ghalichechian
, in
2018 12th European Conference on Antennas and Propagation (EuCAP)
(
IET Digital Library
,
London
,
2018
), p.
1
.
24.
S.
Chen
,
M.
Lust
, and
N.
Ghalichechian
, in
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting
(
IEEE
,
Atlanta, GA
,
2019
), p.
1641
.
25.
S.
Chen
,
M.
Lust
, and
N.
Ghalichechian
,
Microsyst. Technol.
27
(
7
),
2815
(
2021
).
26.
H.
Paik
,
J. A.
Moyer
,
T.
Spila
,
J. W.
Tashman
,
J. A.
Mundy
,
E.
Freeman
,
N.
Shukla
,
J. M.
Lapano
,
R.
Engel-Herbert
,
W.
Zander
,
J.
Schubert
,
D. A.
Muller
,
S.
Datta
,
P.
Schiffer
, and
D. G.
Schlom
,
Appl. Phys. Lett.
107
(
16
),
163101
(
2015
).
27.
Y. G.
Liang
,
S.
Lee
,
H. S.
Yu
,
H. R.
Zhang
,
Y. J.
Liang
,
P. Y.
Zavalij
,
X.
Chen
,
R. D.
James
,
L. A.
Bendersky
,
A. V.
Davydov
,
X. H.
Zhang
, and
I.
Takeuchi
,
Nat. Commun.
11
(
1
),
3539
(
2020
).
28.
G.
Wei
,
X.
Fan
,
Y.
Xiong
,
C.
Lv
,
S.
Li
, and
X.
Lin
,
Appl. Phys. Express
15
(
4
),
043002
(
2022
).
29.
H.-H.
Yang
and
G. M.
Rebeiz
,
IEEE Trans. Microwave Theory Techn.
63
(
11
),
3760
(
2015
).
30.
J.
Li
,
C.
Matos
,
S.
Chen
, and
N.
Ghalichechian
,
IEEE Antennas Wireless Propag. Lett.
20
(
4
),
473
(
2021
).
31.
J.
Li
,
C.
Matos
, and
N.
Ghalichechian
,
IEEE Antennas Wireless Propag. Lett.
20
(
4
),
513
(
2021
).
32.
C.
Matos
,
J.
Li
, and
N.
Ghalichechian
, in
2019 Antenna Measurement Techniques Association Symposium (AMTA)
(
IEEE
,
San Diego, CA
,
2019
), p.
1
.
33.
C.
Matos
,
J.
Humanchuk
, and
N.
Ghalichechian
,
Microwave Opt. Technol. Lett.
63
(
5
),
1520
(
2021
).
34.
N.
Michishita
,
T.
Chisaka
, and
Y.
Yamada
, in
2013 Proceedings of the International Symposium on Antennas & Propagation
(
IEEE
,
Nanjing
,
2013
), Vol.
01
, p.
400
.
35.
Q.
Cheng
,
S.
Paradis
,
T.
Bui
, and
M.
Almasri
,
IEEE Sens. J.
11
(
1
),
167
(
2011
).
36.
D.
Neikirk
,
W. W.
Lam
, and
D.
Rutledge
,
Int. J. Infrared Millimeter Waves
5
(
3
),
245
(
1984
).
37.
A. J.
Miller
,
A.
Luukanen
, and
E. N.
Grossman
, in
Terahertz for Military and Security Applications II
(
SPIE
,
Orlando, FL
,
2004
), Vol.
5411
, p.
18
.
38.
A.
Scheuring
,
P.
Thoma
,
J.
Day
,
K.
Il'in
,
J.
Hanisch
,
B.
Holzapfel
, and
M.
Siegel
,
IEEE Trans. Terahertz Sci. Technol.
3
(
1
),
103
(
2013
).
39.
A.
Tiwari
,
H.
Satoh
,
M.
Aoki
,
M.
Takeda
,
N.
Hiromoto
, and
H.
Inokawa
,
Int. J. ChemTech Res.
7
,
1019
(
2015
).
40.
T.
Hu
,
W.
Ma
,
J.
Wu
,
Z.
Zhang
,
W.
Zhou
,
N.
Yao
,
Q.
Qiu
, and
Z.
Huang
,
Appl. Phys. Express
13
(
12
),
124002
(
2020
).
You do not currently have access to this content.