Engineering the heat flux between two surfaces kept at different temperatures relies on the ability to tailor the dispersion of modes sustained by the system. Metasurfaces made of ordered arrays of subwavelength spherical nanoparticles have an optical response that depends not only on materials but also on their geometrical parameters. Our system is modeled by using an effective medium approximation allowing the homogenization of individual metasurfaces and replacing them with anisotropic layers. Excitation or suppression of surface and hyperbolic modes can be controlled by means of different degrees of freedom offered by the metasurfaces. By leveraging this flexibility, we theoretically show that the near-field radiative heat transfer between two such metasurfaces can be effectively geometrically tuned.

1.
C.
Hargreaves
,
Phys. Lett. A
30
,
491
(
1969
).
2.
D.
Polder
and
M.
Van Hove
,
Phys. Rev. B
4
,
3303
(
1971
).
3.
R.
St-Gelais
,
B.
Guha
,
L.
Zhu
,
S.
Fan
, and
M.
Lipson
,
Nano Lett.
14
,
6971
(
2014
).
4.
A.
Kittel
,
W.
Müller-Hirsch
,
J.
Parisi
,
S.-A.
Biehs
,
D.
Reddig
, and
M.
Holthaus
,
Phys. Rev. Lett.
95
,
224301
(
2005
).
5.
M.
Francoeur
,
Nat. Nanotechnol.
10
,
206
(
2015
).
6.
A.
Fiorino
,
D.
Thompson
,
L.
Zhu
,
B.
Song
,
P.
Reddy
, and
E.
Meyhofer
,
Nano Lett.
18
,
3711
(
2018
).
7.
E.
Rousseau
,
A.
Siria
,
G.
Jourdan
,
S.
Volz
,
F.
Comin
,
J.
Chevrier
, and
J.-J.
Greffet
,
Nat. Photonics
3
,
514
(
2009
).
8.
K.
Kim
,
B.
Song
,
V.
Fernández-Hurtado
,
W.
Lee
,
W.
Jeong
,
L.
Cui
,
D.
Thompson
,
J.
Feist
,
M.
Reid
,
F. J.
García-Vidal
 et al,
Nature
528
,
387
(
2015
).
9.
J.
Pendry
,
J. Phys.
11
,
6621
(
1999
).
10.
E. A.
Vinogradov
and
I. A.
Dorofeev
,
Phys.-Usp.
52
,
425
(
2009
).
11.
R.
Marty
,
A.
Mlayah
,
A.
Arbouet
,
C.
Girard
, and
S.
Tripathy
,
Opt. Express
21
,
4551
(
2013
).
12.
P.
Ben-Abdallah
,
K.
Joulain
,
J.
Drevillon
, and
G.
Domingues
,
J. Appl. Phys.
106
,
044306
(
2009
).
13.
P. R.
Bandaru
,
K. P.
Vemuri
,
F. M.
Canbazoglu
, and
R. S.
Kapadia
,
AIP Adv.
5
,
053403
(
2015
).
14.
S.
Basu
,
Y.
Yang
, and
L.
Wang
,
Appl. Phys. Lett.
106
,
033106
(
2015
).
15.
Y.
Yang
,
S.
Basu
, and
L.
Wang
,
Appl. Phys. Lett.
103
,
163101
(
2013
).
16.
S.-A.
Biehs
,
P.
Ben-Abdallah
,
F. S.
Rosa
,
K.
Joulain
, and
J.-J.
Greffet
,
Opt. Express
19
,
A1088
(
2011
).
17.
J. E.
Pérez-Rodríguez
,
G.
Pirruccio
, and
R.
Esquivel-Sirvent
,
Phys. Rev. Mater.
1
,
062201
(
2017
).
18.
E. Y.
Santiago
,
J.
Peréz-Rodríguez
, and
R.
Esquivel-Sirvent
,
J. Phys. Chem. C
121
,
12392
(
2017
).
19.
P. J.
van Zwol
,
K.
Joulain
,
P.
Ben Abdallah
,
J. J.
Greffet
, and
J.
Chevrier
,
Phys. Rev. B
83
,
201404
(
2011
).
20.
P. J.
van Zwol
,
L.
Ranno
, and
J.
Chevrier
,
Phys. Rev. Lett.
108
,
234301
(
2012
).
21.
M.
Walther
,
D. G.
Cooke
,
C.
Sherstan
,
M.
Hajar
,
M. R.
Freeman
, and
F. A.
Hegmann
,
Phys. Rev. B
76
,
125408
(
2007
).
22.
X.
Liu
and
Z.
Zhang
,
Appl. Phys. Lett.
107
,
143114
(
2015
).
23.
X.-J.
Yi
,
X.-J.
Hong
,
K.
Shehzad
,
T.-B.
Wang
,
X.-M.
Xu
,
Q.-H.
Liao
,
T.-B.
Yu
, and
N.-H.
Liu
,
Mat. Res. Express
6
,
025906
(
2018
).
24.
A.
Ott
and
S.-A.
Biehs
,
Int. J. Heat Mass Transfer
190
,
122796
(
2022
).
25.
Z.
Yu
,
X.
Li
,
T.
Lee
, and
H.
Iizuka
,
Opt. Express
30
,
31584
(
2022
).
26.
T. C.
Choy
,
Effective Medium Theory: Principles and Applications
(
Oxford University Press
,
2015
), Vol.
165
.
27.
A.
Reyes-Coronado
,
G.
Pirruccio
,
A. K.
González-Alcalde
,
J. A.
Urrutia-Anguiano
,
A. J.
Polanco-Mendoza
,
G.
Morales-Luna
,
O.
Vázquez-Estrada
 et al,
J. Phys. Chem. C
126
,
3163
(
2022
).
28.
M.
Luo
,
J.
Zhao
,
L.
Liu
, and
M.
Antezza
,
Phys. Rev. B
102
,
024203
(
2020
).
29.
R.
Márquez-Islas
,
B.
Zenteno-Mateo
,
B.
Flores-Desirena
,
A.
Reyes-Coronado
, and
F.
Pérez-Rodríguez
,
Opt. Mater. Express
5
,
2820
(
2015
).
30.
S.
Castillo-López
,
C.
Villarreal
,
R.
Esquivel-Sirvent
, and
G.
Pirruccio
,
Int. J. Heat Mass Transfer
182
,
121922
(
2022
).

Supplementary Material

You do not currently have access to this content.