We propose a nonlinear acoustic metasurface concept by exploiting the nonlinearity of locally resonant unit cells formed by curved beams. The analytical model is established to explore the nonlinear phenomenon, specifically the second-harmonic generation (SHG) of the nonlinear unit cell, and validated through numerical and experimental studies. By tailoring the phase gradient of the unit cells, nonlinear acoustic metasurfaces are developed to demultiplex different frequency components and achieve anomalous wavefront control of SHG in the transmitted region. To this end, we numerically demonstrate wave steering, wave focusing, and self-bending propagation. Our results show that the proposed nonlinear metasurface provides an effective and efficient platform to achieve significant SHG and separate different harmonic components for wavefront control of individual harmonics. Overall, this study offers an outlook to harness nonlinear effects for acoustic wavefront tailoring and develops potential toward advanced technologies to manipulate acoustic waves.

1.
M. V.
Barnhart
,
X.
Xu
,
Y.
Chen
,
S.
Zhang
,
J.
Song
, and
G.
Huang
, “
Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation
,”
J. Sound Vib.
438
,
1
12
(
2019
).
2.
Z.
Lin
,
H.
Al Ba'ba'a
, and
S.
Tol
, “
Piezoelectric metastructures for simultaneous broadband energy harvesting and vibration suppression of traveling waves
,”
Smart Mater. Struct.
30
,
075037
(
2021
).
3.
S.
Tol
,
F. L.
Degertekin
, and
A.
Erturk
, “
Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting
,”
Appl. Phys. Lett.
111
,
013503
(
2017
).
4.
G.
Hu
,
L.
Tang
,
J.
Liang
,
C.
Lan
, and
R.
Das
, “
Acoustic-elastic metamaterials and phononic crystals for energy harvesting: A review
,”
Smart Mater. Struct.
30
,
085025
(
2021
).
5.
P.
Dorin
and
K. W.
Wang
, “
Broadband frequency and spatial on-demand tailoring of topological wave propagation harnessing piezoelectric metamaterials
,”
Front. Mater.
7
,
409
(
2021
).
6.
Z.
Wu
,
Y.
Zheng
, and
K. W.
Wang
, “
Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation
,”
Phys. Rev. E
97
,
022209
(
2018
).
7.
Z.
Wu
and
K. W.
Wang
, “
On the wave propagation analysis and supratransmission prediction of a metastable modular metastructure for non-reciprocal energy transmission
,”
J. Sound Vib.
458
,
389
406
(
2019
).
8.
B.
Assouar
,
B.
Liang
,
Y.
Wu
,
Y.
Li
,
J. C.
Cheng
, and
Y.
Jing
, “
Acoustic metasurfaces
,”
Nat. Rev. Mater.
3
,
460
472
(
2018
).
9.
Y.
Li
,
X.
Jiang
,
R. Q.
Li
,
B.
Liang
,
X. Y.
Zou
,
L. L.
Yin
, and
J. C.
Cheng
, “
Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces
,”
Phys. Rev. Appl.
2
,
064002
(
2014
).
10.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alù
, “
Controlling sound with acoustic metamaterials
,”
Nat. Rev. Mater.
1
,
16001
(
2016
).
11.
H.
Zhu
and
F.
Semperlotti
, “
Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces
,”
Phys. Rev. Lett.
117
,
034302
(
2016
).
12.
Y.
Zhu
,
L.
Cao
,
A.
Merkel
,
S.-W.
Fan
, and
B.
Assouar
, “
Bifunctional superlens for simultaneous flexural and acoustic wave superfocusing
,”
Appl. Phys. Lett.
116
,
253502
(
2020
).
13.
Z.
Lin
and
S.
Tol
, “
Elastic metasurfaces for full wavefront control and low-frequency energy harvesting
,”
J. Vib. Acoust.
143
,
061005
(
2021
).
14.
J.
Lan
,
Y.
Li
,
Y.
Xu
, and
X.
Liu
, “
Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz resonators
,”
Sci. Rep.
7
,
1
9
(
2017
).
15.
B. I.
Popa
and
S. A.
Cummer
, “
Non-reciprocal and highly nonlinear active acoustic metamaterials
,”
Nat. Commun.
5
,
1
5
(
2014
).
16.
X.
Guo
,
V. E.
Gusev
,
K.
Bertoldi
, and
V.
Tournat
, “
Manipulating acoustic wave reflection by a nonlinear elastic metasurface
,”
J. Appl. Phys.
123
,
124901
(
2018
).
17.
X.
Guo
,
V. E.
Gusev
,
V.
Tournat
,
B.
Deng
, and
K.
Bertoldi
, “
Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface
,”
Phys. Rev. E
99
,
052209
(
2019
).
18.
T. J.
Ypma
, “
Historical development of the Newton–Raphson method
,”
SIAM Rev.
37
,
531
551
(
1995
).
19.
Y. F.
Zhu
,
X. Y.
Zou
,
R. Q.
Li
,
X.
Jiang
,
J.
Tu
,
B.
Liang
, and
J. C.
Cheng
, “
Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface
,”
Sci. Rep.
5
,
1
12
(
2015
).
20.
L.
Froehly
,
F.
Courvoisier
,
A.
Mathis
,
M.
Jacquot
,
L.
Furfaro
,
R.
Giust
,
P.
Lacourt
, and
J.
Dudley
, “
Arbitrary accelerating micron-scale caustic beams in two and three dimensions
,”
Opt. Express
19
,
16455
16465
(
2011
).
21.
P.
Zhang
,
T.
Li
,
J.
Zhu
,
X.
Zhu
,
S.
Yang
,
Y.
Wang
,
X.
Yin
, and
X.
Zhang
, “
Generation of acoustic self-bending and bottle beams by phase engineering
,”
Nat. Commun.
5
,
1
9
(
2014
).
22.
S. R.
Sklan
, “
Splash, pop, sizzle: Information processing with phononic computing
,”
AIP Adv.
5
,
053302
(
2015
).
23.
O. V.
Rudenko
, “
Giant nonlinearities in structurally inhomogeneous media and the fundamentals of nonlinear acoustic diagnostic techniques
,”
Phys.-Usp.
49
,
69
(
2006
).

Supplementary Material

You do not currently have access to this content.