Anapole states—characterized by a strong suppression of far-field scattering—naturally arise in high-index nanoparticles as a result of the interference between certain multipolar moments. Recently, the first-order electric anapole, resulting from the interference between the electric and toroidal dipoles, was characterized under in-plane illumination as required in on-chip photonics. Here, we go a step further and report on the observation of higher-order (magnetic and second-order electric) anapole states in individual silicon disks under in-plane illumination. To do so, we increase the disk dimensions (radius and thickness) so that such anapoles occur at telecom wavelengths. Experiments show dips in the far-field scattering perpendicular to the disk plane at the expected wavelengths and the selected polarizations, which we interpret as a signature of high-order anapoles. Some differences between normal and in-plane excitation are discussed, in particular, the non-cancelation of the sum of the Cartesian electric and toroidal moments for in-plane incidence. Our results pave the way toward the use of different anapole states in photonic integrated circuits either on silicon or other high-index dielectric materials.

1.
A. E.
Miroshnichenko
,
A. B.
Evlyukhin
,
Y. F.
Yu
,
R. M.
Bakker
,
A.
Chipouline
,
A. I.
Kuznetsov
,
B. S.
Luk'yanchuk
,
B. N.
Chichkov
, and
Y. S.
Kivshar
, “
Nonradiating anapole modes in dielectric nanoparticles
,”
Nat. Commun.
6
,
8069
(
2015
).
2.
R.
Wang
and
L.
Dal Negro
, “
Engineering non-radiative anapole modes for broadband absorption enhancement of light
,”
Opt. Express
24
,
19048
(
2016
).
3.
K. V.
Baryshnikova
,
D. A.
Smirnova
,
B. S.
Luk'yanchuk
, and
Y. S.
Kivshar
, “
Optical anapoles: Concepts and applications
,”
Adv. Opt. Mater.
7
,
1801350
(
2019
).
4.
Y.
Yang
,
V. A.
Zenin
, and
S. I.
Bozhevolnyi
, “
Anapole-assisted strong field enhancement in individual all-dielectric nanostructures
,”
ACS Photonics
5
,
1960
1966
(
2018
).
5.
V.
Savinov
,
N.
Papasimakis
,
D. P.
Tsai
, and
N. I.
Zheludev
, “
Optical anapoles
,”
Commun. Phys.
2
,
69
(
2019
).
6.
G.
Grinblat
,
Y.
Li
,
M. P.
Nielsen
,
R. F.
Oulton
, and
S. A.
Maier
, “
Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk
,”
ACS Nano
11
,
953
960
(
2017
).
7.
M.
Timofeeva
,
L.
Lang
,
F.
Timpu
,
C.
Renaut
,
A.
Bouravleuv
,
I.
Shtrom
,
G.
Cirlin
, and
R.
Grange
, “
Anapoles in free-standing III–V nanodisks enhancing second-harmonic generation
,”
Nano Lett.
18
,
3695
3702
(
2018
).
8.
D. G.
Baranov
,
R.
Verre
,
P.
Karpinski
, and
M.
Käll
, “
Anapole-enhanced intrinsic Raman scattering from silicon nanodisks
,”
ACS Photonics
5
,
2730
2736
(
2018
).
9.
E.
Diaz-Escobar
,
T.
Bauer
,
E.
Pinilla-Cienfuegos
,
A. I.
Barreda
,
A.
Griol
,
L.
Kuipers
, and
A.
Martínez
, “
Radiationless anapole states in on-chip photonics
,”
Light: Sci. Applicat.
10
,
204
(
2021
).
10.
A. I.
Barreda
,
J. M.
Saiz
,
F.
González
,
F.
Moreno
, and
P.
Albella
, “
Recent advances in high refractive index dielectric nanoantennas: Basics and applications
,”
AIP Adv.
9
,
040701
(
2019
).
11.
A.
Barreda
,
F.
Vitale
,
A. E.
Minovich
,
C.
Ronning
, and
I.
Staude
, “
Applications of hybrid metal-dielectric nanostructures: State of the art
,”
Adv. Photonics Res.
3
,
2100286
(
2022
).
12.
V. A.
Zenin
,
A. B.
Evlyukhin
,
S. M.
Novikov
,
Y.
Yang
,
R.
Malureanu
,
A. V.
Lavrinenko
,
B. N.
Chichkov
, and
S. I.
Bozhevolnyi
, “
Direct amplitude-phase near-field observation of higher-order anapole states
,”
Nano Lett.
17
,
7152
7159
(
2017
).
13.
J.
Tian
,
H.
Luo
,
Y.
Yang
,
F.
Ding
,
Y.
Qu
,
D.
Zhao
,
M.
Qiu
, and
S. I.
Bozhevolnyi
, “
Active control of anapole states by structuring the phase-change alloy ge2sb2te5
,”
Nat. Commun.
10
,
396
(
2019
).
14.
B.
Luk'yanchuk
,
R.
Paniagua-Domínguez
,
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
, and
Y. S.
Kivshar
, “
Hybrid anapole modes of high-index dielectric nanoparticles
,”
Phys. Rev. A
95
,
063820
(
2017
).
15.
A. G.
Lamprianidis
and
A. E.
Miroshnichenko
, “
Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams
,”
Beilstein J. Nanotechnol.
9
,
1478
1490
(
2018
).
16.
P.
Kapitanova
,
E.
Zanganeh
,
N.
Pavlov
,
M.
Song
,
P.
Belov
,
A.
Evlyukhin
, and
A.
Miroshnichenko
, “
Seeing the unseen: Experimental observation of magnetic anapole state inside a high-index dielectric particle
,”
Annalen der Phys.
532
,
2000293
(
2020
).
17.
J. S.
Totero Gongora
,
A. E.
Miroshnichenko
,
Y. S.
Kivshar
, and
A.
Fratalocchi
, “
Anapole nanolasers for mode-locking and ultrafast pulse generation
,”
Nat. Commun.
8
,
15535
(
2017
).
18.
A.
Espinosa-Soria
,
A.
Griol
, and
A.
Martínez
, “
Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps
,”
Opt. Express
24
,
9592
(
2016
).
19.
A.
Espinosa-Soria
and
A.
Martinez
, “
Transverse spin and spin-orbit coupling in silicon waveguides
,”
IEEE Photonics Technol. Lett.
28
,
1561
1564
(
2016
).
20.
V.
Mazzone
,
J. S.
Totero Gongora
, and
A.
Fratalocchi
, “
Near-field coupling and mode competition in multiple anapole systems
,”
Appl. Sci.
7
,
542
(
2017
).
21.
T.
Huang
,
B.
Wang
,
W.
Zhang
, and
C.
Zhao
, “
Ultracompact energy transfer in anapole-based metachains
,”
Nano Lett.
21
,
6102
6110
(
2021
).
22.
M. V.
Rybin
,
K. L.
Koshelev
,
Z. F.
Sadrieva
,
K. B.
Samusev
,
A. A.
Bogdanov
,
M. F.
Limonov
, and
Y. S.
Kivshar
, “
High-q supercavity modes in subwavelength dielectric resonators
,”
Phys. Rev. Lett.
119
,
243901
(
2017
).
23.
K.
Koshelev
,
S.
Kruk
,
E.
Melik-Gaykazyan
,
J.-H.
Choi
,
A.
Bogdanov
,
H.-G.
Park
, and
Y.
Kivshar
, “
Subwavelength dielectric resonators for nonlinear nanophotonics
,”
Science
367
,
288
292
(
2020
).

Supplementary Material

You do not currently have access to this content.