A dual-band polarized wavelength-selective optical switch whose thermochromic transmission property is opposite to VO2 itself is proposed. The switch shows a low and high transmittance during phase transition from insulating VO2 to metallic VO2, respectively. The multi-mode coupled circuit model is employed to calculate and tailor the operating frequency of the switch in xz sections for TM waves and yz sections for TE waves. The switch exhibits a transmittance difference of more than one order of magnitude between “on” and “off” modes when the structure is same in the x and y directions under circularly polarized light incidence. For the condition that the structure is not same in the x and y directions, thermochromic transmittance becomes polarization-dependent. By superimposing two polarization states, a dual-band as well as broadband thermochromic transmission property is obtained. The mechanisms of suppressed and enhanced transmission lie in the excitation of MPC and MPV2, respectively. This study may have theoretical guiding significance for design and tailoring of metamaterials with wavelength-selective broadband thermochromic transmission property and potentially apply in active filters and architectural energy-efficient glass.

1.
H.
Wang
,
J.-Y.
Chang
,
Y.
Yang
, and
L.
Wang
, “
Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters
,”
Int. J. Heat Mass Transfer
98
,
788
798
(
2016
).
2.
X.
Liu
and
Y.
Xuan
, “
Full-spectrum volumetric solar thermal conversion via photonic nanofluids
,”
Nanoscale
9
(
39
),
14854
14860
(
2017
).
3.
Y.
Zhai
,
Y.
Ma
,
S. N.
David
,
D.
Zhao
,
R.
Lou
,
G.
Tan
,
R.
Yang
, and
X.
Yin
, “
Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
,”
Science
355
,
1062
1066
(
2017
).
4.
S. C.
Wang
,
T. Y.
Jiang
,
Y.
Meng
,
R. G.
Yang
,
G.
Tan
, and
Y.
Long
, “
Scalable thermochromic smart windows with passive radiative cooling regulation
,”
Science
374
(
6574
),
1501
1504
(
2021
).
5.
W.
Gao
,
G.
Shi
,
Z.
Jin
,
J.
Shu
,
Q.
Zhang
,
R.
Vajtai
,
P. M.
Ajayan
,
J.
Kono
, and
Q.
Xu
, “
Excitation and active control of propagating surface plasmon polaritons in graphene
,”
Nano Lett.
13
(
8
),
3698
3702
(
2013
).
6.
J.
Baxter
,
Z.
Bian
,
G.
Chen
,
D.
Danielson
,
M. S.
Dresselhaus
,
A. G.
Fedorov
,
T. S.
Fisher
,
C. W.
Jones
,
E.
Maginn
,
U.
Kortshagen
,
A.
Manthiram
,
A.
Nozik
,
D. R.
Rolison
,
T.
Sands
,
L.
Shi
,
D.
Sholl
, and
Y.
Wu
, “
Nanoscale design to enable the revolution in renewable energy
,”
Energy Environ. Sci.
2
(
6
),
559
(
2009
).
7.
X. B.
Yin
,
R. G.
Yang
,
G.
Tan
, and
S. H.
Fan
, “
Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source
,”
Science
370
(
6518
),
786
(
2020
).
8.
E.
Rephaeli
,
A.
Raman
, and
S.
Fan
, “
Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling
,”
Nano Lett.
13
(
4
),
1457
1461
(
2013
).
9.
N. I.
Landy
,
S.
Sajuyigbe
,
J. J.
Mock
,
D. R.
Smith
, and
W. J.
Padilla
, “
Perfect metamaterial absorber
,”
Phys. Rev. Lett.
100
(
20
),
207402
(
2008
).
10.
W.-W.
Zhang
,
H.
Qi
,
Z.-Q.
Yu
,
M.-J.
He
,
Y.-T.
Ren
, and
Y.
Li
, “
Optimization configuration of selective solar absorber using multi-island genetic algorithm
,”
Sol. Energy
224
,
947
955
(
2021
).
11.
W.-W.
Zhang
,
H.
Qi
,
Y.-M.
Yin
, and
Y.-T.
Ren
, “
Tailoring radiative properties of a complex trapezoidal grating solar absorber by coupling between SPP and multi-order MP for solar energy harvesting
,”
Opt. Commun.
479
,
126416
(
2021
).
12.
G. A.
Wurtz
,
R.
Pollard
,
W.
Hendren
,
G. P.
Wiederrecht
,
D. J.
Gosztola
,
V. A.
Podolskiy
, and
A. V.
Zayats
, “
Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality
,”
Nat Nanotechnol.
6
(
2
),
107
111
(
2011
).
13.
J.
Kyoung
and
S. W.
Hwang
, “
Configurable plasmonic band-pass filters operating under the addition rule
,”
ACS Photonics
3
(
5
),
819
827
(
2016
).
14.
D. K.
Lim
,
K. S.
Jeon
,
H. M.
Kim
,
J. M.
Nam
, and
Y. D.
Suh
, “
Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection
,”
Nat. Mater.
9
(
1
),
60
67
(
2010
).
15.
X.
Liu
,
Q.
Wang
,
X.
Zhang
,
H.
Li
,
Q.
Xu
,
Y.
Xu
,
X.
Chen
,
S.
Li
,
M.
Liu
,
Z.
Tian
,
C.
Zhang
,
C.
Zou
,
J.
Han
, and
W.
Zhang
, “
Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface
,”
Adv. Opt. Mater.
7
(
12
),
1900175
(
2019
).
16.
W. X.
Huang
,
X. G.
Yin
,
C. P.
Huang
,
Q. J.
Wang
,
T. F.
Miao
, and
Y. Y.
Zhu
, “
Optical switching of a metamaterial by temperature controlling
,”
Appl. Phys. Lett.
96
(
26
),
261908
(
2010
).
17.
J.
Gu
,
R.
Singh
,
X.
Liu
,
X.
Zhang
,
Y.
Ma
,
S.
Zhang
,
S. A.
Maier
,
Z.
Tian
,
A. K.
Azad
,
H. T.
Chen
,
A. J.
Taylor
,
J.
Han
, and
W.
Zhang
, “
Active control of electromagnetically induced transparency analogue in terahertz metamaterials
,”
Nat. Commun.
3
,
1151
(
2012
).
18.
L. H.
Nicholls
,
T.
Stefaniuk
,
M. E.
Nasir
,
F. J.
Rodriguez-Fortuno
,
G. A.
Wurtz
, and
A. V.
Zayats
, “
Designer photonic dynamics by using non-uniform electron temperature distribution for on-demand all-optical switching times
,”
Nat. Commun.
10
(
1
),
2967
(
2019
).
19.
T.
Katase
and
H.
Ohta
, “
Oxide-based optical, electrical and magnetic properties switching devices with water-incorporated gate insulator
,”
Jpn. J. Appl. Phys., Part 1
58
(
9
),
090501
(
2019
).
20.
A.
Joushaghani
,
J.
Jeong
,
S.
Paradis
,
D.
Alain
,
J.
Stewart Aitchison
, and
J. K.
Poon
, “
Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors
,”
Opt. Express
23
(
3
),
3657
3668
(
2015
).
21.
Z. L.
Sámson
,
K. F.
MacDonald
,
F.
De Angelis
,
B.
Gholipour
,
K.
Knight
,
C. C.
Huang
,
E.
Di Fabrizio
,
D. W.
Hewak
, and
N. I.
Zheludev
, “
Metamaterial electro-optic switch of nanoscale thickness
,”
Appl. Phys. Lett.
96
(
14
),
143105
(
2010
).
22.
W. W.
Zhang
,
H.
Qi
,
A. T.
Sun
,
Y. T.
Ren
, and
J. W.
Shi
, “
Periodic trapezoidal VO2-Ge multilayer absorber for dynamic radiative cooling
,”
Opt. Express
28
(
14
),
20609
20623
(
2020
).
23.
K. J.
Miller
,
R. F.
Haglund
, and
S. M.
Weiss
, “
Optical phase change materials in integrated silicon photonic devices: Review
,”
Opt. Mater. Express
8
(
8
),
2415
(
2018
).
24.
A. S.
Barker
,
H. W.
Verleur
, and
H. J.
Guggenheim
, “
Infrared optical properties of Vanadium Dioxide above and below the transition temperature
,”
Phys. Rev. Lett.
17
(
26
),
1286
1289
(
1966
).
25.
H.
Jerominek
,
F.
Picard
, and
D.
Vincent
, “
Vanadium-oxide films for optical switching and detection
,”
Opt. Eng.
32
(
9
),
2092
2099
(
1993
).
26.
Z.
Chen
,
Y.
Gao
,
L.
Kang
,
J.
Du
,
Z.
Zhang
,
H.
Luo
,
H.
Miao
, and
G.
Tan
, “
VO2-based double-layered films for smart windows: Optical design, all-solution preparation and improved properties
,”
Sol. Energy Mater. Sol. Cells
95
(
9
),
2677
2684
(
2011
).
27.
N.
Wang
,
M.
Duchamp
,
R. E.
Dunin-Borkowski
,
S.
Liu
,
X.
Zeng
,
X.
Cao
, and
Y.
Long
, “
Terbium-doped VO2 thin films: Reduced phase transition temperature and largely enhanced luminous transmittance
,”
Langmuir
32
(
3
),
759
764
(
2016
).
28.
E.
Gagaoudakis
,
I.
Kortidis
,
G.
Michail
,
K.
Tsagaraki
,
V.
Binas
,
G.
Kiriakidis
, and
E.
Aperathitis
, “
Study of low temperature rf-sputtered Mg-doped vanadium dioxide thermochromic films deposited on low-emissivity substrates
,”
Thin Solid Films
601
,
99
105
(
2016
).
29.
N.
Shen
,
S.
Chen
,
Z.
Chen
,
X.
Liu
,
C.
Cao
,
B.
Dong
,
H.
Luo
,
J.
Liu
, and
Y.
Gao
, “
The synthesis and performance of Zr-doped and W-Zr-codoped VO2 nanoparticles and derived flexible foils
,”
J. Mater. Chem. A
2
(
36
),
15087
15093
(
2014
).
30.
L.
Long
,
S.
Taylor
, and
L.
Wang
, “
Enhanced infrared emission by thermally switching the excitation of magnetic polariton with scalable microstructured VO2 metasurfaces
,”
ACS Photonics
7
,
2219
(
2020
).
31.
S.
Taylor
,
L.
Long
,
R.
McBurney
,
P.
Sabbaghi
,
J.
Chao
, and
L.
Wang
, “
Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling
,”
Sol. Energy Mater. Sol. Cells
217
,
110739
(
2020
).
32.
J. F.
Picard
,
S. C.
Schaub
,
G.
Rosenzweig
,
J. C.
Stephens
,
M. A.
Shapiro
, and
R. J.
Temkin
, “
Laser-driven semiconductor switch for generating nanosecond pulses from a megawatt gyrotron
,”
Appl. Phys. Lett.
114
(
16
),
164102
(
2019
).
33.
M. L.
Kulygin
,
G. G.
Denisov
, and
V. V.
Kocharovsky
, “
Modeling of dynamic effects in a laser-driven semiconductor switch of high-power microwaves
,”
J. Infrared, Millimeter, Terahertz Waves
31
,
31
(
2009
).
34.
M. L.
Kulygin
,
G. G.
Denisov
, and
Y. V.
Rodin
, “
Optically controlled semiconductor microwave modulator with nanosecond response
,”
Tech. Phys. Lett.
37
(
4
),
368
370
(
2011
).
35.
M.
Kulygin
,
G.
Denisov
,
K.
Vlasova
,
E.
Novikov
,
V.
Belousov
,
N.
Andreev
,
A.
Makarov
,
S.
Shubin
,
M.
Khozin
,
A.
Gashturi
,
D.
Sobolev
,
A.
Fokin
, and
A.
Tsvetkov
, “
Nanosecond microwave semiconductor switches for 258…266 GHz
,”
J. Infrared, Millimeter, Terahertz Waves
36
(
9
),
845
855
(
2015
).
36.
M.
Kulygin
,
G.
Denisov
,
S.
Shubin
,
S.
Salahetdinov
, and
E.
Novikov
, “
Subterahertz nanosecond switches driven by second-long laser pulses
,”
IEEE Trans. Terahertz Sci. Technol.
7
(
2
),
225
227
(
2017
).
37.
M. L.
Kulygin
, “
Stress test of nanosecond semiconductor cavity switches with subterahertz gyrotrons
,”
IEEE Trans. Terahertz Sci. Technol.
9
(
2
),
186
192
(
2019
).
38.
M. L.
Kulygin
,
I. A.
Litovsky
,
V. I.
Belousov
,
E. A.
Novikov
,
G. I.
Kalynova
, and
M. Y.
Shmelev
, “
High-resolution diagnostics of GaAs wafer inhomogeneity using an optical switch within the terahertz band
,”
Appl. Phys. Lett.
118
(
24
),
244103
(
2021
).
39.
T.
Cui
,
B.
Bai
, and
H.-B.
Sun
, “
Tunable metasurfaces based on active materials
,”
Adv. Funct. Mater.
29
(
10
),
1806692
(
2019
).
40.
Y.
Sharma
,
V. A.
Tiruveedhula
,
J. F.
Muth
, and
A.
Dhawan
, “
VO2 based waveguide-mode plasmonic nano-gratings for optical switching
,”
Opt. Express
23
(
5
),
5822
5849
(
2015
).
41.
H.
Wang
,
X.
Yi
,
S.
Chen
, and
X.
Fu
, “
Fabrication of vanadium oxide micro-optical switches
,”
Sens. Actuators, A
122
(
1
),
108
112
(
2005
).
42.
C.
Wan
,
E. H.
Horak
,
J.
King
,
J.
Salman
,
Z.
Zhang
,
Y.
Zhou
,
P.
Roney
,
B.
Gundlach
,
S.
Ramanathan
,
R. H.
Goldsmith
, and
M. A.
Kats
, “
Limiting optical diodes enabled by the phase transition of vanadium dioxide
,”
ACS Photonics
5
(
7
),
2688
2692
(
2018
).
43.
Z. M.
Zhang
,
Nano/Microscale Heat Transfer
(
McGraw-Hill
,
New York
,
2007
).
44.
Y.
Guo
,
S.
Zhou
,
B.
Xiong
,
Y.
Shuai
, and
J.
Zhao
, “
Mechanism and prediction of multi-mode magnetic polaritons by MCLC circuit model in complex micro/nanostructures
,”
J. Quant. Spectrosc. Radiat. Transfer
269
,
107700
(
2021
).
45.
Y. M.
Guo
,
Y.
Shuai
, and
H. P.
Tan
, “
Mechanism of polaritons coupling from perspective of equivalent MLC circuits model in slit arrays
,”
Opt. Express
27
(
15
),
21173
(
2019
).
46.
Y.
Guo
,
B.
Xiong
,
Y.
Shuai
, and
J.
Zhao
, “
Thermal driven wavelength-selective optical switch based on magnetic polaritons coupling
,”
J. Quant. Spectrosc. Radiat. Transfer
255
,
107230
(
2020
).
47.
L. P.
Wang
and
Z. M.
Zhang
, “
Resonance transmission or absorption in deep gratings explained by magnetic polaritons
,”
Appl. Phys. Lett.
95
,
111904
(
2009
).
48.
B. J.
Lee
,
L. P.
Wang
, and
Z. M.
Zhang
, “
Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film
,”
Opt. Express
16
,
11328
11336
(
2008
).
49.
P. Y.
Yang
,
H.
Ye
, and
Z. M. M.
Zhang
, “
Experimental demonstration of the effect of magnetic polaritons on the radiative properties of deep aluminum gratings
,”
J. Heat Transfer-Trans. ASME
141
(
5
),
052702
(
2019
).
50.
C.
Ji
,
Z.
Wu
,
X.
Wu
,
J.
Wang
,
X.
Liu
,
J.
Gou
,
H.
Zhou
,
W.
Yao
, and
Y.
Jiang
, “
Terahertz transmittance and metal-insulator phase transition properties of M2 phase VO2 films induced by Cr doping
,”
Appl. Surf. Sci.
455
,
622
628
(
2018
).
51.
Z.
Zhang
,
Y.
Gao
,
Z.
Chen
,
J.
Du
,
C.
Cao
,
L.
Kang
, and
H.
Luo
, “
Thermochromic VO2 thin films: Solution-based processing, improved optical properties, and lowered phase transformation temperature
,”
Langmuir
26
(
13
),
10738
10744
(
2010
).
You do not currently have access to this content.