Non-Hermitian systems have gained a great deal of interest in various wave problems due their ability of exhibiting unprecedented phenomena such as invisibility, cloaking, enhanced sensing, or the skin effect. The latter manifests itself by the localization of all bulk modes in a specific frequency range at a given boundary, with an unconventional bulk-boundary correspondence. In this work, we propose to realize the skin effect for flexural waves in a non-Hermitian piezoelectric phononic beam with feedback control between a sensor and an actuator in each unit cell. By implementing a non-Hermitian parameter, effective gain and loss can be achieved in the phononic beam characterized by complex eigen frequencies, and non-reciprocal pass bands are obtained. We highlight that the split point separating the gain and loss areas can occur not only at the edges of the Brillouin zones but also inside the same Brillouin zone. We further analyze the influence of the geometric and non-Hermitian parameters on the complex dispersions and the split point. The topology of the complex bands is characterized by the winding number, which supports the skin effect together with the non-reciprocity. The localization degree of the skin mode manifested by the enhanced beam's vibration energy at one boundary is related to the strength of the non-reciprocity, and the skin mode can be always excited regardless of the source position. Our results provide a potential platform to introduce non-Hermiticity into phononic or metamaterial systems with novel functions for elastic waves such as topological insulators, vibration attenuation or amplification, and energy harvesting.

1.
Z.
Gu
,
H.
Gao
,
P.-C.
Cao
,
T.
Liu
,
X.-F.
Zhu
, and
J.
Zhu
, “
Controlling sound in non-Hermitian acoustic systems
,”
Phys. Rev. Appl.
16
,
057001
(
2021
).
2.
I.
Rotter
, “
A non-Hermitian Hamilton operator and the physics of open quantum systems
,”
J. Phys. A: Math. Theor.
42
,
153001
(
2009
).
3.
L.
Lu
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Topological photonics
,”
Nat. Photonics
8
,
821
829
(
2014
).
4.
R.
El-Ganainy
,
K. G.
Makris
,
M.
Khajavikhan
,
Z. H.
Musslimani
,
S.
Rotter
, and
D. N.
Christodoulides
, “
Non-Hermitian physics and PT symmetry
,”
Nat. Phys.
14
,
11
19
(
2018
).
5.
S.
Longhi
, “
Parity-time symmetry meets photonics: A new twist in non-Hermitian optics
,”
Europhys. Lett.
120
,
64001
(
2017
).
6.
V.
Achilleos
,
G.
Theocharis
,
O.
Richoux
, and
V.
Pagneux
, “
Non-Hermitian acoustic metamaterials: Role of exceptional points in sound absorption
,”
Phys. Rev. B
95
,
144303
(
2017
).
7.
N.
Gerard
and
Y.
Jing
, “
Loss in acoustic metasurfaces: A blessing in disguise
,”
MRS Commun.
10
,
32
41
(
2020
).
8.
Y.
Auregan
and
V.
Pagneux
, “
PT-symmetric scattering in flow duct acoustics
,”
Phys. Rev. Lett.
118
,
174301
(
2017
).
9.
L.
Feng
,
Y. L.
Xu
,
W. S.
Fegadolli
,
M. H.
Lu
,
J. E.
Oliveira
,
V. R.
Almeida
,
Y. F.
Chen
, and
A.
Scherer
, “
Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies
,”
Nat. Mater.
12
,
108
113
(
2013
).
10.
S. A.
Cummer
and
D.
Schurig
, “
One path to acoustic cloaking
,”
New J. Phys.
9
,
45
45
(
2007
).
11.
Q.
Zhong
,
J.
Ren
,
M.
Khajavikhan
,
D. N.
Christodoulides
,
S. K.
Ozdemir
, and
R.
El-Ganainy
, “
Sensing with exceptional surfaces in order to combine sensitivity with robustness
,”
Phys. Rev. Lett.
122
,
153902
(
2019
).
12.
X.
Zhang
,
Y.
Tian
,
J. H.
Jiang
,
M. H.
Lu
, and
Y. F.
Chen
, “
Observation of higher-order non-Hermitian skin effect
,”
Nat. Commun.
12
,
5377
(
2021
).
13.
P.-C.
Cao
,
Y.-G.
Peng
,
Y.
Li
, and
X.-F.
Zhu
, “
Phase-locking diffusive skin effect
,”
Chin. Phys. Lett.
39
,
057801
(
2022
).
14.
P.-C.
Cao
,
Y.
Li
,
Y.-G.
Peng
,
M.
Qi
,
W.-X.
Huang
,
P.-Q.
Li
, and
X.-F.
Zhu
, “
Diffusive skin effect and topological heat funneling
,”
Commun. Phys.
4
,
230
(
2021
).
15.
K.
Pichler
,
M.
Kuhmayer
,
J.
Bohm
,
A.
Brandstotter
,
P.
Ambichl
,
U.
Kuhl
, and
S.
Rotter
, “
Random anti-lasing through coherent perfect absorption in a disordered medium
,”
Nature
567
,
351
355
(
2019
).
16.
J.
Yi
,
Z.
Li
,
M.
Negahban
,
R.
Xia
, and
J.
Zhu
, “
Asymmetric viscoelastic metamaterials for broad bandgap design and unidirectional zero reflection
,”
Mech. Syst. Signal Process.
162
,
108101
(
2022
).
17.
M.
Farhat
,
P. Y.
Chen
,
S.
Guenneau
, and
Y.
Wu
, “
Self-dual singularity through lasing and antilasing in thin elastic plates
,”
Phys. Rev. B
103
,
134101
(
2021
).
18.
M. I. N.
Rosa
,
M.
Mazzotti
, and
M.
Ruzzene
, “
Exceptional points and enhanced sensitivity in PT-symmetric continuous elastic media
,”
J. Mech. Phys. Solids
149
,
104325
(
2021
).
19.
Y.
Jin
,
Y.
Pennec
,
B.
Bonello
,
H.
Honarvar
,
L.
Dobrzynski
,
B.
Djafari-Rouhani
, and
M. I.
Hussein
, “
Physics of surface vibrational resonances: Pillared phononic crystals, metamaterials, and metasurfaces
,”
Rep. Prog. Phys.
84
,
086502
(
2021
).
20.
Y.
Jin
,
L.
He
,
Z.
Wen
,
B.
Mortazavi
,
H.
Guo
,
D.
Torrent
,
B.
Djafari-Rouhani
,
T.
Rabczuk
,
X.
Zhuang
, and
Y.
Li
, “
Intelligent on-demand design of phononic metamaterials
,”
Nanophotonics
11
,
439
460
(
2022
).
21.
Z.
Wen
,
W.
Wang
,
A.
Khelif
,
B.
Djafari-Rouhani
, and
Y.
Jin
, “
A perspective on elastic metastructures for energy harvesting
,”
Appl. Phys. Lett.
120
,
020501
(
2022
).
22.
E.
Ghavanloo
and
M.
Shaat
, “
General nonlocal Kelvin–Voigt viscoelasticity: Application to wave propagation in viscoelastic media
,”
Acta Mech.
233
,
57
67
(
2022
).
23.
X.
Li
,
Z.
Yu
,
H.
Iizuka
, and
T.
Lee
, “
Experimental demonstration of extremely asymmetric flexural wave absorption at the exceptional point
,”
Extreme Mech. Lett.
52
,
101649
(
2022
).
24.
Y.
Liu
,
Z.
Liang
,
J.
Zhu
,
L.
Xia
,
O.
Mondain-Monval
,
T.
Brunet
,
A.
Alù
, and
J.
Li
, “
Willis metamaterial on a structured beam
,”
Phys. Rev. X
9
,
011040
(
2019
).
25.
Q.
Wu
,
X.
Zhang
,
P.
Shivashankar
,
Y.
Chen
, and
G.
Huang
, “
Independent flexural wave frequency conversion by a linear active metalayer
,”
Phys. Rev. Lett.
128
,
244301
(
2022
).
26.
Q.
Wu
,
Y.
Chen
, and
G.
Huang
, “
Asymmetric scattering of flexural waves in a parity-time symmetric metamaterial beam
,”
J. Acoust. Soc. Am.
146
,
850
862
(
2019
).
27.
Z.
Hou
and
B.
Assouar
, “
Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials
,”
J. Appl. Phys.
123
,
085101
(
2018
).
28.
Z.
Hou
,
H.
Ni
, and
B.
Assouar
, “
PT-symmetry for elastic negative refraction
,”
Phys. Rev. Appl.
10
,
044071
(
2018
).
29.
S.
Yao
and
Z.
Wang
, “
Edge states and topological invariants of non-Hermitian systems
,”
Phys. Rev. Lett.
121
,
086803
(
2018
).
30.
F. K.
Kunst
,
E.
Edvardsson
,
J. C.
Budich
, and
E. J.
Bergholtz
, “
Biorthogonal bulk-boundary correspondence in non-Hermitian systems
,”
Phys. Rev. Lett.
121
,
026808
(
2018
).
31.
S.
Liu
,
R.
Shao
,
S.
Ma
,
L.
Zhang
,
O.
You
,
H.
Wu
,
Y. J.
Xiang
,
T. J.
Cui
, and
S.
Zhang
, “
Non-Hermitian skin effect in a non-Hermitian electrical circuit
,”
Research
2021
,
5608038
.
32.
L.
Xiao
,
T.
Deng
,
K.
Wang
,
G.
Zhu
,
Z.
Wang
,
W.
Yi
, and
P.
Xue
, “
Non-Hermitian bulk–boundary correspondence in quantum dynamics
,”
Nat. Phys.
16
,
761
766
(
2020
).
33.
M.
Brandenbourger
,
X.
Locsin
,
E.
Lerner
, and
C.
Coulais
, “
Non-reciprocal robotic metamaterials
,”
Nat. Commun.
10
,
4608
(
2019
).
34.
A.
Ghatak
,
M.
Brandenbourger
,
J.
van Wezel
, and
C.
Coulais
, “
Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial
,”
Proc. Natl. Acad. Sci.
117
,
29561
29568
(
2020
).
35.
M. I. N.
Rosa
and
M.
Ruzzene
, “
Dynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactions
,”
New J. Phys.
22
,
053004
(
2020
).
36.
Y.
Chen
,
X.
Li
,
C.
Scheibner
,
V.
Vitelli
, and
G.
Huang
, “
Realization of active metamaterials with odd micropolar elasticity
,”
Nat. Commun.
12
,
5935
(
2021
).
37.
D.
Braghini
,
L. G. G.
Villani
,
M. I. N.
Rosa
, and
J. R.
de F Arruda
, “
Non-Hermitian elastic waveguides with piezoelectric feedback actuation: Non-reciprocal bands and skin modes
,”
J. Phys. D: Appl. Phys.
54
,
285302
(
2021
).
38.
L.
Li
and
Y.
Guo
, “
Analysis of longitudinal waves in rod-type piezoelectric phononic crystals
,”
Crystals
6
,
45
(
2016
).
39.
Y.
Jin
,
W.
Wang
, and
B.
Djafari-Rouhani
, “
Asymmetric topological state in an elastic beam based on symmetry principle
,”
Int. J. Mech. Sci.
186
,
105897
(
2020
).
40.
W.
Wang
,
Y.
Jin
,
W.
Wang
,
B.
Bonello
,
B.
Djafari-Rouhani
, and
R.
Fleury
, “
Robust Fano resonance in a topological mechanical beam
,”
Phys. Rev. B
101
,
024101
(
2020
).
41.
L.
He
,
H.
Guo
,
Y.
Jin
,
X.
Zhuang
,
T.
Rabczuk
, and
Y.
Li
, “
Machine-learning-driven on-demand design of phononic beams
,”
Sci. China Phys., Mech. Astron.
65
,
214612
(
2022
).
42.
D.
Ammosov
,
M.
Vasilyeva
,
A.
Nasedkin
, and
Y.
Efendiev
, “
Generalized multiscale finite element method for piezoelectric problem in heterogeneous media
,”
Eng. Anal. Boundary Elem.
135
,
12
25
(
2022
).
43.
X.
Wu
,
Z.
Wen
,
Y.
Jin
,
T.
Rabczuk
,
X.
Zhuang
, and
B.
Djafari-Rouhani
, “
Broadband Rayleigh wave attenuation by gradient metamaterials
,”
Int. J. Mech. Sci.
205
,
106592
(
2021
).
44.
X.
Dai
,
F.
Zhu
,
Z.
Qian
, and
J.
Yang
, “
Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration
,”
Nano Energy
43
,
22
28
(
2018
).
45.
Z.
Gong
,
Y.
Ashida
,
K.
Kawabata
,
K.
Takasan
,
S.
Higashikawa
, and
M.
Ueda
, “
Topological phases of non-Hermitian systems
,”
Phys. Rev. X
8
,
031079
(
2018
).
46.
T.
Kitagawa
,
E.
Berg
,
M.
Rudner
, and
E.
Demler
, “
Topological characterization of periodically driven quantum systems
,”
Phys. Rev. B
82
,
235114
(
2010
).
47.
C.
Yin
,
H.
Jiang
,
L.
Li
,
R.
, and
S.
Chen
, “
Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems
,”
Phys. Rev. A
97
,
052115
(
2018
).
48.
S.
Mandal
,
R.
Banerjee
, and
T. C.
Liew
, “
From the topological spin-Hall effect to the non-Hermitian skin effect in an elliptical micropillar chain
,”
ACS Photonics
9
,
527
539
(
2022
).

Supplementary Material

You do not currently have access to this content.