Heat conduction mechanisms in superlattices could be different across different types of interfaces. Van der Waals superlattices are structures physically assembled through weak van der Waals interactions by design and may host properties beyond the traditional superlattices limited by lattice matching and processing compatibility, offering a different type of interface. In this work, natural van der Waals (SnS)1.17(NbS2)n superlattices are synthesized, and their thermal conductivities are measured by time-domain thermoreflectance as a function of interface density. Our results show that heat conduction of (SnS)1.17(NbS2)n superlattices is dominated by interface scattering when the coherent length of phonons is larger than the superlattice period, indicating that incoherent phonon transport dominates through-plane heat conduction in van der Waals superlattices even when the period is atomically thin and abrupt, in contrast to conventional superlattices. Our findings provide valuable insights into the understanding of the thermal behavior of van der Waals superlattices and devise approaches for effective thermal management of superlattices depending on the distinct types of interfaces.

1.
T. J.
Echtermeyer
,
L.
Britnell
,
P. K.
Jasnos
,
A.
Lombardo
,
R. V.
Gorbachev
,
A. N.
Grigorenko
,
A. K.
Geim
,
A. C.
Ferrari
, and
K. S.
Novoselov
, “
Strong plasmonic enhancement of photovoltage in graphene
,”
Nat. Commun.
2
,
458
(
2011
).
2.
Y.
Liu
,
H.
Zhou
,
R.
Cheng
,
W.
Yu
,
Y.
Huang
, and
X.
Duan
, “
Highly flexible electronics from scalable vertical thin film transistors
,”
Nano Lett.
14
(
3
),
1413
1418
(
2014
).
3.
F.
Withers
,
O.
Del Pozo-Zamudio
,
A.
Mishchenko
,
A. P.
Rooney
,
A.
Gholinia
,
K.
Watanabe
,
T.
Taniguchi
,
S. J.
Haigh
,
A. K.
Geim
,
A. I.
Tartakovskii
, and
K. S.
Novoselov
, “
Light-emitting diodes by band-structure engineering in van der Waals heterostructures
,”
Nat. Mater.
14
(
3
),
301
306
(
2015
).
4.
T.
Yang
,
B.
Zheng
,
Z.
Wang
,
T.
Xu
,
C.
Pan
,
J.
Zou
,
X.
Zhang
,
Z.
Qi
,
H.
Liu
,
Y.
Feng
,
W.
Hu
,
F.
Miao
,
L.
Sun
,
X.
Duan
, and
A.
Pan
, “
Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions
,”
Nat. Commun.
8
,
1906
(
2017
).
5.
W. J.
Yu
,
Z.
Li
,
H.
Zhou
,
Y.
Chen
,
Y.
Wang
,
Y.
Huang
, and
X.
Duan
, “
Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters
,”
Nat. Mater.
12
(
3
),
246
252
(
2013
).
6.
W. J.
Yu
,
Y.
Liu
,
H.
Zhou
,
A.
Yin
,
Z.
Li
,
Y.
Huang
, and
X.
Duan
, “
Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials
,”
Nat. Nanotechnol.
8
(
12
),
952
958
(
2013
).
7.
M. C.
Asensio
and
M.
Batzill
, “
Interfaces and heterostructures of van der Waals materials
,”
J. Phys.
28
(
49
),
490301
(
2016
).
8.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal resistance at interfaces
,”
Appl. Phys. Lett.
51
(
26
),
2200
2202
(
1987
).
9.
Y.
Liu
,
N. O.
Weiss
,
X.
Duan
,
H.-C.
Cheng
,
Y.
Huang
, and
X.
Duan
, “
Van der Waals heterostructures and devices
,”
Nat. Rev. Mater.
1
,
16042
(
2016
).
10.
R.
Cheaito
,
C. A.
Polanco
,
S.
Addamane
,
J.
Zhang
,
A. W.
Ghosh
,
G.
Balakrishnan
, and
P. E.
Hopkins
, “
Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport
,”
Phys. Rev. B
97
(
8
),
085306
(
2018
).
11.
A. D.
Christodoulides
,
P.
Guo
,
L.
Dai
,
J. M.
Hoffman
,
X.
Li
,
X.
Zuo
,
D.
Rosenmann
,
A.
Brumberg
,
M. G.
Kanatzidis
,
R. D.
Schaller
, and
J. A.
Malen
, “
Signatures of coherent phonon transport in ultralow thermal conductivity two-dimensional Ruddlesden–Popper phase perovskites
,”
ACS Nano
15
(
3
),
4165
4172
(
2021
).
12.
N. M.
Dawley
,
E. K.
Pek
,
C.-H.
Lee
,
E. J.
Ragasa
,
X.
Xiong
,
K.
Lee
,
S. R.
Phillpot
,
A. V.
Chernatynskiy
,
D. G.
Cahill
, and
D. G.
Schlom
, “
Thermal conductivity of the n = 1–5 and 10 members of the (SrTiO3)nSrO Ruddlesden–Popper superlattices
,”
Appl. Phys. Lett.
118
(
9
),
091904
(
2021
).
13.
Y. K.
Koh
,
Y.
Cao
,
D. G.
Cahill
, and
D.
Jena
, “
Heat‐transport mechanisms in superlattices
,”
Adv. Funct. Mater.
19
(
4
),
610
615
(
2009
).
14.
B.
Latour
,
S.
Volz
, and
Y.
Chalopin
, “
Microscopic description of thermal-phonon coherence: From coherent transport to diffuse interface scattering in superlattices
,”
Phys. Rev. B
90
(
1
),
014307
(
2014
).
15.
M. N.
Luckyanova
,
J.
Garg
,
K.
Esfarjani
,
A.
Jandl
,
M. T.
Bulsara
,
A. J.
Schmidt
,
A. J.
Minnich
,
S.
Chen
,
M. S.
Dresselhaus
,
Z.
Ren
,
E. A.
Fitzgerald
, and
G.
Chen
, “
Coherent phonon heat conduction in superlattices
,”
Science
338
(
6109
),
936
939
(
2012
).
16.
J.
Ravichandran
,
A. K.
Yadav
,
R.
Cheaito
,
P. B.
Rossen
,
A.
Soukiassian
,
S. J.
Suresha
,
J. C.
Duda
,
B. M.
Foley
,
C.-H.
Lee
,
Y.
Zhu
,
A. W.
Lichtenberger
,
J. E.
Moore
,
D. A.
Muller
,
D. G.
Schlom
,
P. E.
Hopkins
,
A.
Majumdar
,
R.
Ramesh
, and
M. A.
Zurbuchen
, “
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
,”
Nat. Mater.
13
(
2
),
168
172
(
2014
).
17.
M. V.
Simkin
and
G. D.
Mahan
, “
Minimum thermal conductivity of superlattices
,”
Phys. Rev. Lett.
84
(
5
),
927
(
2000
).
18.
Y.
Wang
,
H.
Huang
, and
X.
Ruan
, “
Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers
,”
Phys. Rev. B
90
(
16
),
165406
(
2014
).
19.
C.
Chiritescu
,
D. G.
Cahill
,
C.
Heideman
,
Q.
Lin
,
C.
Mortensen
,
N. T.
Nguyen
,
D.
Johnson
,
R.
Rostek
, and
H.
Böttner
, “
Low thermal conductivity in nanoscale layered materials synthesized by the method of modulated elemental reactants
,”
J. Appl. Phys.
104
(
3
),
033533
(
2008
).
20.
C.
Chiritescu
,
D. G.
Cahill
,
N.
Nguyen
,
D.
Johnson
,
A.
Bodapati
,
P.
Keblinski
, and
P.
Zschack
, “
Ultralow thermal conductivity in disordered, layered WSe2 crystals
,”
Science
315
(
5810
),
351
353
(
2007
).
21.
N. S.
Gunning
,
J.
Feser
,
M.
Beekman
,
D. G.
Cahill
, and
D. C.
Johnson
, “
Synthesis and thermal properties of solid-state structural isomers: Ordered intergrowths of SnSe and MoSe2
,”
J. Am. Chem. Soc.
137
(
27
),
8803
8809
(
2015
).
22.
S. J.
Haigh
,
A.
Gholinia
,
R.
Jalil
,
S.
Romani
,
L.
Britnell
,
D. C.
Elias
,
K. S.
Novoselov
,
L. A.
Ponomarenko
,
A. K.
Geim
, and
R.
Gorbachev
, “
Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices
,”
Nat. Mater.
11
(
9
),
764
767
(
2012
).
23.
J. J.
Schwartz
,
H.-J.
Chuang
,
M. R.
Rosenberger
,
S. V.
Sivaram
,
K. M.
McCreary
,
B. T.
Jonker
, and
A.
Centrone
, “
Chemical identification of interlayer contaminants within van der Waals heterostructures
,”
ACS Appl. Mater. Interfaces
11
(
28
),
25578
25585
(
2019
).
24.
W.
Bai
,
P.
Li
,
S.
Ju
,
C.
Xiao
,
H.
Shi
,
S.
Wang
,
S.
Qin
,
Z.
Sun
, and
Y.
Xie
, “
Monolayer behavior of NbS2 in natural van der Waals heterostructures
,”
J. Phys. Chem. Lett.
9
(
22
),
6421
6425
(
2018
).
25.
A. R. H. F.
Ettema
,
C.
Haas
, and
T. S.
Turner
, “
Strong multiple resonances in the photoemission spectra of transition-metal-layer and misfit-layer compounds
,”
Phys. Rev. B
47
(
19
),
12794
(
1993
).
26.
C. M.
Fang
,
A. R. H. F.
Ettema
,
C.
Haas
,
G. A.
Wiegers
,
H.
van Leuken
, and
R. A.
de Groot
, “
Electronic structure of the misfit-layer compound (SnS)1.17NbS2 deduced from band-structure calculations and photoelectron spectra
,”
Phys. Rev. B
52
(
4
),
2336
(
1995
).
27.
C.
Wan
,
Y.
Wang
,
N.
Wang
,
W.
Norimatsu
,
M.
Kusunoki
, and
K.
Koumoto
, “
Development of novel thermoelectric materials by reduction of lattice thermal conductivity
,”
Sci. Technol. Adv. Mater.
11
,
044306
(
2010
).
28.
H.
Zhu
,
C.
Zhao
,
P.
Nan
,
X-m.
Jiang
,
J.
Zhao
,
B.
Ge
,
C.
Xiao
, and
Y.
Xie
, “
Intrinsically low lattice thermal conductivity in natural superlattice (Bi2)m(Bi2Te3)n thermoelectric materials
,”
Chem. Mater.
33
(
4
),
1140
1148
(
2021
).
29.
T.
Terashima
and
N.
Kojima
, “
Magnetic properties of incommensurate layer compounds (CeS)1.2NbS2 and (CeS)0.6NbS2
,”
J. Phys. Soc. Jpn.
61
(
9
),
3303
3312
(
1992
).
30.
C. J.
Carmalt
,
T. D.
Manning
,
I. P.
Parkin
,
E. S.
Peters
, and
A. L.
Hector
, “
Formation of a new (1T) trigonal NbS2 polytype via atmospheric pressure chemical vapour deposition
,”
J. Mater. Chem.
14
(
3
),
290
291
(
2004
).
31.
D.
Hu
,
G.
Xu
,
L.
Xing
,
X.
Yan
,
J.
Wang
,
J.
Zheng
,
Z.
Lu
,
P.
Wang
,
X.
Pan
, and
L.
Jiao
, “
Two‐dimensional semiconductors grown by chemical vapor transport
,”
Angew. Chem., Int. Ed.
56
(
13
),
3611
3615
(
2017
).
32.
H.
Li
,
J.
Liu
,
N.
Guo
,
L.
Xiao
,
H.
Zhang
,
S.
Zhou
,
Y.
Wu
, and
S.
Fan
, “
Seeded growth of high-quality transition metal dichalcogenide single crystals via chemical vapor transport
,”
CrystEngComm
22
(
46
),
8017
8022
(
2020
).
33.
L.
Xing
,
X.
Yan
,
J.
Zheng
,
G.
Xu
,
Z.
Lu
,
L.
Liu
,
J.
Wang
,
P.
Wang
,
X.
Pan
, and
L.
Jiao
, “
Highly crystalline ReSe2 atomic layers synthesized by chemical vapor transport
,”
InfoMat
1
(
4
),
552
558
(
2019
).
34.
Y.
Zhao
and
S.
Jin
, “
Controllable water vapor assisted chemical vapor transport synthesis of WS2–MoS2 heterostructure
,”
ACS Mater. Lett.
2
(
1
),
42
48
(
2020
).
35.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
(
12
),
5119
5122
(
2004
).
36.
B.
Sun
and
Y.
Kan Koh
, “
Understanding and eliminating artifact signals from diffusely scattered pump beam in measurements of rough samples by time-domain thermoreflectance (TDTR)
,”
Rev. Sci. Instrum.
87
(
6
),
064901
(
2016
).
37.
J.
Ju
,
B.
Sun
,
G.
Haunschild
,
B.
Loitsch
,
B.
Stoib
,
M. S.
Brandt
,
M.
Stutzmann
,
Y. K.
Koh
, and
G.
Koblmüller
, “
Thermoelectric properties of In-rich InGaN and InN/InGaN superlattices
,”
AIP Adv.
6
(
4
),
045216
(
2016
).
38.
B.
Sun
,
X.
Gu
,
Q.
Zeng
,
X.
Huang
,
Y.
Yan
,
Z.
Liu
,
R.
Yang
, and
Y. K.
Koh
, “
Temperature dependence of anisotropic thermal‐conductivity tensor of bulk black phosphorus
,”
Adv. Mater.
29
(
3
),
1603297
(
2017
).
39.
B.
Sun
,
G.
Haunschild
,
C.
Polanco
,
J.
Ju
,
L.
Lindsay
,
G.
Koblmüller
, and
Y. K.
Koh
, “
Dislocation-induced thermal transport anisotropy in single-crystal group-III nitride films
,”
Nat. Mater.
18
(
2
),
136
140
(
2019
).
40.
B.
Sun
,
S.
Niu
,
R. P.
Hermann
,
J.
Moon
,
N.
Shulumba
,
K.
Page
,
B.
Zhao
,
A. S.
Thind
,
K.
Mahalingam
, and
J.
Milam-Guerrero
, “
High frequency atomic tunneling yields ultralow and glass-like thermal conductivity in chalcogenide single crystals
,”
Nat. Commun.
11
,
6039
(
2020
).
41.
T.
Lanigan-Atkins
,
S.
Yang
,
J. L.
Niedziela
,
D.
Bansal
,
A. F.
May
,
A. A.
Puretzky
,
J. Y. Y.
Lin
,
D. M.
Pajerowski
,
T.
Hong
,
S.
Chi
,
G.
Ehlers
, and
O.
Delaire
, “
Extended anharmonic collapse of phonon dispersions in SnS and SnSe
,”
Nat. Commun.
11
,
4430
(
2020
).
42.
H.
Liu
,
C.
Yang
,
B.
Wei
,
L.
Jin
,
A.
Alatas
,
A.
Said
,
S.
Tongay
,
F.
Yang
,
A.
Javey
, and
J.
Hong
, “
Anomalously suppressed thermal conduction by electron‐phonon coupling in charge‐density‐wave tantalum disulfide
,”
Adv. Sci.
7
(
11
),
1902071
(
2020
).
43.
Z.
Zhang
,
Y.
Guo
,
M.
Bescond
,
J.
Chen
,
M.
Nomura
, and
S.
Volz
, “
Coherent thermal transport in nano-phononic crystals: An overview
,”
APL Mater.
9
(
8
),
081102
(
2021
).
44.
R.
Guo
,
Y.-D.
Jho
, and
A. J.
Minnich
, “
Coherent control of thermal phonon transport in van der Waals superlattices
,”
Nanoscale
10
(
30
),
14432
14440
(
2018
).
45.
G.
Chen
, “
Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures
,”
J. Heat Transfer
119
(
2
),
220
229
(
1997
).
46.
R.
Guo
,
X.
Wang
,
Y.
Kuang
, and
B.
Huang
, “
First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS
,”
Phys. Rev. B
92
(
11
),
115202
(
2015
).
47.
D. G.
Cahill
,
S. K.
Watson
, and
R. O.
Pohl
, “
Lower limit to the thermal conductivity of disordered crystals
,”
Phys. Rev. B
46
(
10
),
6131
(
1992
).
48.
W. S.
Capinski
,
H. J.
Maris
,
T.
Ruf
,
M.
Cardona
,
K.
Ploog
, and
D. S.
Katzer
, “
Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique
,”
Phys. Rev. B
59
(
12
),
8105
(
1999
).
49.
R. M.
Costescu
,
D. G.
Cahill
,
F. H.
Fabreguette
,
Z. A.
Sechrist
, and
S. M.
George
, “
Ultra-low thermal conductivity in W/Al2O3 nanolaminates
,”
Science
303
(
5660
),
989
990
(
2004
).
50.
S. T.
Huxtable
,
A. R.
Abramson
,
C.-L.
Tien
,
A.
Majumdar
,
C.
LaBounty
,
X.
Fan
,
G.
Zeng
,
J. E.
Bowers
,
A.
Shakouri
, and
E. T.
Croke
, “
Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices
,”
Appl. Phys. Lett.
80
(
10
),
1737
1739
(
2002
).
51.
Y.
Chen
,
D.
Li
,
J. R.
Lukes
,
Z.
Ni
, and
M.
Chen
, “
Minimum superlattice thermal conductivity from molecular dynamics
,”
Phys. Rev. B
72
(
17
),
174302
(
2005
).
52.
B.
Yang
and
G.
Chen
, “
Partially coherent phonon heat conduction in superlattices
,”
Phys. Rev. B
67
(
19
),
195311
(
2003
).
53.
A.
Molina-Sanchez
and
L.
Wirtz
, “
Phonons in single-layer and few-layer MoS2 and WS2
,”
Phys. Rev. B
84
(
15
),
155413
(
2011
).
54.
W.
Li
,
X.
Chen
, and
S.
Yang
, “
Phonon transport across coherent and incoherent interfaces
,”
JOM
71
(
11
),
3885
3891
(
2019
).
55.
Y.
Kyoung Ryu
,
R.
Frisenda
, and
A.
Castellanos-Gomez
, “
Superlattices based on van der Waals 2D materials
,”
Chem. Commun.
55
(
77
),
11498
11510
(
2019
).

Supplementary Material

You do not currently have access to this content.