Energy confinement plays an important role in improving wave–matter interactions, enabling applications such as sensing, lasing, and filtering. One convenient solution for achieving large energy-confinement is based on embedded eigenstates, i.e., non-radiating eigenmodes supported by open structures. While the analysis of these modes is quite consolidated in electromagnetics and optics, their relevance in acoustics has been less explored, despite their wide application potential. In this work, we explore acoustic embedded scattering eigenstates within the radiation continuum enabled by resonant metasurface pairs. At resonance, each metasurface strongly reflects the input wave, but as their surface resonances interfere with each other through coupling with a longitudinal resonance, an embedded eigenstate emerges. Through both theoretical and numerical analysis, we show the conditions for such an exotic resonant state to emerge and its implication for acoustic systems.

1.
F.
Monticone
,
H. M.
Doeleman
,
W. D.
Hollander
,
A. F.
Koenderink
, and
A.
Alu
, “
Trapping light in plain sight: Embedded photonic eigenstates in zero-index metamaterials
,”
Laser Photonics Rev.
12
,
1700220
(
2018
).
2.
L.
Li
and
H.
Yin
, “
Bound states in the continuum in double layer structures
,”
Sci. Rep.
6
,
26988
(
2016
).
3.
A.
Brolo
, “
Plasmonics for future biosensors
,”
Nat. Photonics
6
,
709
713
(
2012
).
4.
S.
Hernandez
,
O.
Gauthier-Lafaye
,
A. L.
Fehrembach
,
S.
Bonnefont
,
P.
Arguel
,
F.
Lozes-Dupuy
, and
A.
Sentenac
, “
High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of ∼ 60°
,”
Appl. Phys. Lett.
92
,
131112
(
2008
).
5.
A.
Kodigala
,
T.
Lepetit
,
Q.
Gu
,
B.
Bahari
,
Y.
Fainman
, and
B.
Kanté
, “
Lasing action from photonic bound states in continuum
,”
Nature
541
,
196
199
(
2017
).
6.
H.
Friedrich
and
D.
Wintgen
, “
Interfering resonances and bound states in the continuum
,”
Phys. Rev. A
32
,
3231
(
1985
).
7.
J.
von Neumann
and
E. P.
Wigner
,
Phys. Z.
30
,
467
(
1929
).
8.
S.
Weimann
,
Y.
Xu
,
R.
Keil
,
A. E.
Miroshnichenko
,
A.
Tünnermann
,
S.
Nolte
,
A. A.
Sukhorukov
,
A.
Szameit
, and
Y. S.
Kivshar
, “
Compact surface Fano states embedded in the continuum of waveguide arrays
,”
Phys. Rev. Lett.
111
,
240403
(
2013
).
9.
A.
Krasnok
and
A.
Alú
, “
Embedded scattering eigenstates using resonant metasurfaces
,”
J. Opt.
20
,
064002
(
2018
).
10.
M. I.
Molina
,
A. E.
Miroshnichenko
, and
Y. S.
Kivshar
, “
Surface bound states in the continuum
,”
Phys. Rev. Lett.
108
,
070401
(
2012
).
11.
E. N.
Bulgakov
and
A. F.
Sadreev
, “
Bound states in the continuum in photonic waveguides inspired by defects
,”
Phys. Rev. B
78
,
075105
(
2008
).
12.
C.
Linton
and
P.
McIver
, “
Embedded trapped modes in water waves and acoustics
,”
Wave Motion
45
,
16
(
2007
).
13.
R.
Parker
, “
Resonance effects in wake shedding from parallel plates: Calculation of resonant frequencies
,”
J. Sound Vib.
5
,
330
343
(
1967
).
14.
W.
Koch
, “
Resonant acoustic frequencies of flat plate cascades
,”
J. Sound Vib.
88
,
233
242
(
1983
).
15.
R.
Parker
, “
Resonance effects in wake shedding from parallel plates: Some experimental observations
,”
J. Sound Vib.
4
,
62
72
(
1966
).
16.
N. A.
Cumpsty
and
D. S.
Whitehead
, “
The excitation of acoustic resonances by vortex shedding
,”
J. Sound Vib.
18
,
353
369
(
1971
).
17.
N.
Moiseyev
, “
Suppression of Feshbach resonance widths in two-dimensional waveguides and quantum dots: A lower bound for the number of bound states in the continuum
,”
Phys. Rev. Lett.
102
,
167404
(
2009
).
18.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
(
Princeton University Press
,
2008
), Chaps. 8 and 9.
19.
T. C.
Lim
and
G. W.
Farnell
, “
Character of pseudo surface waves on anisotropic crystals
,”
J. Acoust. Soc. Am.
45
,
845
851
(
1969
).
20.
F.
Monticone
and
A.
Alù
, “
Embedded photonic eigenvalues in 3D nanostructures
,”
Phys. Rev. Lett.
112
,
213903
(
2014
).
21.
M. G.
Silveirinha
, “
Trapping light in open plasmonic nanostructures
,”
Phys. Rev. A
89
,
023813
(
2014
).
22.
E.
Nahvi
,
M. J.
Mencagli
, and
N.
Engheta
, “
Tunable radiation enhancement and suppression using a pair of photonically doped epsilon-near-zero (ENZ) slabs
,”
Opt. Lett.
47
,
1319
1322
(
2022
).
23.
B. J.
Yang
,
M. S.
Bahramy
, and
N.
Nagaosa
, “
Topological protection of bound states against the hybridization
,”
Nat. Commun.
4
,
1524
(
2013
).
24.
G.
Cattapan
and
P.
Lotti
, “
Fano resonances in stubbed quantum waveguides with impurities
,”
Eur. Phys. J. B
60
,
51
60
(
2007
).
25.
W.
Koch
, “
Acoustic resonances in rectangular open cavities
,”
AIAA J.
43
,
2342
2349
(
2005
).
26.
J. M.
Foley
,
S. M.
Young
, and
J. D.
Phillips
, “
Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating
,”
Phys. Rev. B.
89
,
165111
(
2014
).
27.
H.
Matsubara
,
S.
Yoshimoto
,
H.
Saito
 et al., “
GaN photonic-crystal surface emitting laser at blue-violet wavelengths
,”
Science
319
,
445
447
(
2008
).
28.
K.
Hirose
,
Y.
Liang
,
Y.
Kurosaka
 et al., “
Watt-class high-power, high-beam quality photonic-crystal lasers
,”
Nat. Photonics
8
,
406
411
(
2014
).
29.
A. A.
Yanik
,
A. E.
Cetin
,
M.
Huang
 et al., “
Seeing protein monolayers with naked eye through plasmonic Fano resonances
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
11784
11789
(
2011
).
30.
X.
Fan
and
I. M.
White
, “
Optofluidic microsystems for chemical and biological analysis
,”
Nat. Photonics
5
,
591
597
(
2011
).
31.
C. W.
Hsu
,
B.
Zhen
,
A. D.
Stone
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Bound states in the continuum
,”
Nat. Rev. Mater.
1
,
16048
(
2016
).
32.
A.
Benoît
,
B.
Beaudou
,
M.
Alharbi
 et al., “
Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber
,”
Opt. Express
23
,
14002
14009
(
2015
).
33.
A.
Krasnok
,
A.
Alú
, and
N.
Jankovic
, “
Unveiling topological charges and their manipulation in electronic circuits
,” arXiv:2203.15196 (
2022
).
34.
Z.
Sakotic
,
A.
Krasnok
,
A.
Alú
, and
N.
Jankovic
, “
Topological scattering singularities and embedded eigenstates for polarization control and sensing applications
,”
Photonics Res.
9
,
1310
(
2021
).
35.
L.
Huang
,
A.
Krasnok
,
A.
Alú
,
Y.
Yu
,
D.
Neshev
, and
A. E.
Miroshnichenko
, “
Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides
,”
Rep. Prog. Phys.
85
,
046401
(
2022
).
36.
Y.
Yu
,
A.
Sakanas
,
A. R.
Zali
 et al., “
Ultra-coherent Fano laser based on a bound state in the continuum
,”
Nat. Photonics
15
,
758
764
(
2021
).
37.
E. E.
Maslova
,
M. V.
Rybin
,
A. A.
Bogdanov
, and
Z. F.
Sadrieva
, “
Bound states in the continuum in periodic structures with structural disorder
,”
Nanophotonics
10
,
4313
4321
(
2021
).
38.
R. E.
Jacobsen
,
A.
Krasnok
,
S.
Arslanagic
,
A. V.
Lavrinenko
, and
A.
Alu
, “
Boundary-induced embedded eigenstate in a single resonator for advanced sensing
,”
ACS Photonics
9
,
1936
1943
(
2022
).
39.
R.
Duggan
,
Y.
Ra'di
, and
A.
Alù
, “
Temporally and spatially coherent emission from thermal embedded eigenstates
,”
ACS Photonics
6
,
2949
2956
(
2019
).
40.
W.
Tong
,
C.
Gong
,
X.
Liu
,
S.
Yuan
,
Q.
Huang
,
J.
Xia
, and
Y.
Wang
, “
Enhanced third harmonic generation in a silicon metasurface using trapped mode
,”
Opt. Express
24
,
19661
19670
(
2016
).
41.
P. P.
Vabishchevich
,
S.
Liu
,
M. B.
Sinclair
,
G. A.
Keeler
,
G. M.
Peake
, and
I.
Brener
, “
Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces
,”
ACS Photonics
5
,
1685
1690
(
2018
).
42.
L.
Carletti
,
K.
Koshelev
,
C.
Angelis
, and
Y.
Kivshar
, “
Giant nonlinear response at the nanoscale driven by bound states in the continuum
,”
Phys. Rev. Lett.
121
,
033903
(
2018
).
43.
K.
Koshelev
,
Y.
Tang
,
K.
Li
,
D.
Choi
,
G.
Li
, and
Y.
Kivshar
, “
Nonlinear metasurfaces governed by bound states in the continuum
,”
ACS Photonics
6
,
1639
1644
(
2019
).
44.
M.
Cotrufo
and
A.
Alù
, “
Excitation of single-photon embedded eigenstates in coupled cavity–atom systems
,”
Optica
6
,
799
804
(
2019
).
45.
S.
Lannebère
and
M. G.
Silveirinha
, “
Optical meta-atom for localization of light with quantized energy
,”
Nat. Commun.
6
,
8766
(
2015
).
46.
I.
Deriy
,
I.
Toftul
,
M.
Petrov
, and
A.
Bogdanov
, “
Bound states in the continuum in compact acoustic resonators
,”
Phys. Rev. Lett.
128
,
084301
(
2022
).
47.
A. G.
Every
and
A.
Maznev
, “
Supersonic SAW: Bound states within a radiation continuum
,”
Proc. Meet. Acoust.
38
,
045007
(
2019
).
48.
M. F.
Lewis
, “
Acoustic wave devices employing surface skimming bulk waves
,” US patent 4159435 (
1979
).
49.
M.
Ueda
,
O.
Kawachi
,
G.
Endoh
 et al., “
Surface acoustic wave device using a leaky surface acoustic wave with an optimized cut angle of a piezoelectric substrate
,” US patent 6037847 (
2000
).
50.
O.
Kawachi
,
S.
Mineyoshi
,
G.
Endoh
 et al., “
Optimal cut for leaky SAW on LiTaO3 for high performance resonators and filters
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
48
,
1442
1448
(
2001
).
51.
A. A.
Lyapina
,
D. N.
Maksimov
,
A. S.
Pilipchukand
, and
A. F.
Sadreev
, “
Bound states in the continuum in open acoustic resonators
,”
J. Fluid Mech.
780
,
370
387
(
2015
).
52.
E. B.
Davies
, “
Trapped modes in acoustic wavegiudes
,”
Q. J. Mech. Appl. Math.
51
,
477–492
(
1998
).
53.
S.
Huang
,
T.
Liu
,
Z.
Zhou
,
X.
Wang
,
J.
Zhu
, and
Y.
Li
, “
Extreme sound confinement from quasi bound states in the continuum
,”
Phys. Rev. App.
14
,
021001
(
2020
).
54.
L.
Cao
,
Y.
Zhu
,
S.
Wan
,
Y.
Zeng
,
Y.
Li
, and
B.
Assouar
, “
Perfect absorption of flexural waves induced by bound state in the continuum
,”
Extreme Mech. Lett.
47
,
101364
(
2021
).
55.
L.
Huang
,
Y.
Chiang
,
S.
Huang
,
C.
Shen
,
F.
Deng
,
Y.
Cheng
,
B.
Jia
,
Y.
Li
,
D. A.
Powell
, and
A. E.
Miroshnichenko
, “
Sound trapping in an open resonator
,”
Nat. Commun.
12
,
4819
(
2021
).
56.
S.
Hein
,
W.
Koch
, and
L.
Nannen
, “
Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems
,”
J. Fluid Mech.
692
,
257
287
(
2012
).
57.
L.
Huang
,
B.
Jia
,
Y.
Chiang
,
S.
Huang
,
C.
Shen
,
F.
Deng
,
T.
Yang
,
D. A.
Powell
,
Y.
Li
, and
A. E.
Miroshnichenko
, “
Topological supercavity resonances in the finite system
,”
Adv. Sci.
9
,
2200257
(
2022
).
58.
Y.
Sato
,
Y.
Tanaka
,
J.
Upham
 et al., “
Strong coupling between distant photonic nanocavities and its dynamic control
,”
Nat. Photonics
6
,
56
61
(
2012
).
59.
H.
Esfahlani
,
Y.
Mazor
, and
A.
Alù
, “
Homogenization and design of acoustic Willis metasurfaces
,”
Phys. Rev. B
103
,
054306
(
2021
).
60.
D. M.
Pozar
,
Microwave Engineering
, 4th ed. (
John Wiley & Sons Inc
,
2011
).
61.
M.
Yazdi
and
M.
Albooyeh
, “
Analysis of metasurfaces at oblique incidence
,”
IEEE Trans. Antennas Propag.
65
,
2397
2404
(
2017
).
62.
A.
Monti
,
A.
Toscano
, and
F.
Bilotti
, “
Exploiting the surface dispersion of nanoparticles to design optical-resistive sheets and Salisbury absorbers
,”
Opt. Lett.
41
,
3383
3386
(
2016
).
63.
A.
Monti
,
A.
Alù
,
A.
Toscano
, and
F.
Bilotti
, “
Narrowband transparent absorbers based on ellipsoidal nanoparticles
,”
Appl. Opt.
56
(
27
),
7533
7538
(
2017
).
You do not currently have access to this content.