For a biased trap-filled insulator, the current transport is governed by the physics of charge injection from the metallic electrode and also the trap-limited space-charge conduction in the insulator. With a Schottky barrier at the interface of the metal-insulator junction, charge tunneling injection from a metal into the trap-filled insulator is different from an Ohmic contact. At sufficiently large amount of charge injection at high voltages, the charge transport becomes the trap-limited space-charge conduction. In this paper, we develop a consistent model to calculate the correct IV characteristics up to a breakdown field strength of 1 V/nm. Using this model, we analyze the transport characteristic of three different metal-insulator junctions (ITO/PPV, Al/h-BN, and Al/ZrO2) and identify the conduction mechanisms over a wide range of the applied voltage, insulator's thickness, and properties of the traps. Our findings report the interplay between various transport mechanisms, which is useful to characterize the correct current transport for novel insulators such as organic semiconductors, 2D insulators, and metal-oxide electronics.

1.
X.
Guo
and
A.
Facchetti
, “
The journey of conducting polymers from discovery to application
,”
Nat. Mater.
19
,
922
928
(
2020
).
2.
B.
van der Zee
,
Y.
Li
,
G.-J. A. H.
Wetzelaer
, and
P. W. M.
Blom
, “
Efficiency of polymer light-emitting diodes: A perspective
,”
Adv. Mater.
34
,
2108887
(
2022
).
3.
F. C.
Chen
, “
Organic semiconductors
,” in
Encyclopedia of Modern Optics
(
Elsevier
,
Amsterdam
,
2018
), pp.
220
231
.
4.
R. J.
Martín-Palma
and
J.
Martínez-Duart
,
Nanotechnology for Microelectronics and Photonics
(
Elsevier
,
Amsterdam
,
2017
).
5.
I.
Hill
,
D.
Milliron
,
J.
Schwartz
, and
A.
Kahn
, “
Organic semiconductor interfaces: Electronic structure and transport properties
,”
Appl. Surf. Sci.
166
,
354
362
(
2000
).
6.
H.
Sasabe
and
J.
Kido
, “
Recent progress in phosphorescent organic light-emitting devices
,”
Eur. J. Chem.
2013
,
7653
7663
.
7.
G.
Gelinck
,
P.
Heremans
,
K.
Nomoto
, and
T. D.
Anthopoulos
, “
Organic transistors in optical displays and microelectronic applications
,”
Adv. Mater.
22
,
3778
3798
(
2010
).
8.
S.
Yuvaraja
,
A.
Nawaz
,
Q.
Liu
,
D.
Dubal
,
S. G.
Surya
,
K. N.
Salama
, and
P.
Sonar
, “
Organic field-effect transistor-based flexible sensors
,”
Chem. Soc. Rev.
49
,
3423
3460
(
2020
).
9.
X.
Xu
,
L.
Li
,
B.
Liu
, and
Y.
Zou
, “
Organic semiconductor memory devices based on a low-band gap polyfluorene derivative with isoindigo as electron-trapping moieties
,”
Appl. Phys. Lett.
98
,
063303
(
2011
).
10.
K.
Pei
,
X.
Ren
,
Z.
Zhou
,
Z.
Zhang
,
X.
Ji
, and
P. K. L.
Chan
, “
A high-performance optical memory array based on inhomogeneity of organic semiconductors
,”
Adv. Mater.
30
,
1706647
(
2018
).
11.
B. P.
Rand
,
J.
Genoe
,
P.
Heremans
, and
J.
Poortmans
, “
Solar cells utilizing small molecular weight organic semiconductors
,”
Prog. Photovoltaics: Res. Appl.
15
,
659
676
(
2007
).
12.
S.
Günes
,
H.
Neugebauer
, and
N. S.
Sariciftci
, “
Conjugated polymer-based organic solar cells
,”
Chem. Rev.
107
,
1324
1338
(
2007
).
13.
J.
Banerjee
,
K.
Dutta
,
M. A.
Kader
, and
S. K.
Nayak
, “
An overview on the recent developments in polyaniline-based supercapacitors
,”
Polym. Adv. Technol.
30
,
1902
1921
(
2019
).
14.
S.-Y.
Lee
,
S.-C.
Wang
,
J.-S.
Chen
, and
J.-L.
Huang
, “
Ion beam sputter deposited TiAlN films for metal–insulator–metal (Ba,Sr)TiO3 capacitor application
,”
Thin Solid Films
516
,
7816
7821
(
2008
).
15.
F.-C.
Chiu
, “
A review on conduction mechanisms in dielectric films
,”
Adv. Mater. Sci. Eng.
2014
,
578168
.
16.
N. F.
Mott
and
R. W.
Gurney
,
Electronic Processes in Ionic Crystals
(
Oxford U. P
.,
London
,
1964
).
17.
C. D.
Child
, “
Discharge from hot CaO
,”
Phys. Rev. (Ser. I)
32
,
492
(
1911
).
18.
I.
Langmuir
, “
The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes
,”
Phys. Rev.
21
,
419
(
1923
).
19.
P.
Zhang
,
Á.
Valfells
,
L.
Ang
,
J.
Luginsland
, and
Y.
Lau
, “
100 years of the physics of diodes
,”
Appl. Phys. Rev.
4
,
011304
(
2017
).
20.
P.
Zhang
,
Y. S.
Ang
,
A. L.
Garner
,
Ã.
Valfells
,
J. W.
Luginsland
, and
L. K.
Ang
, “
Space–charge limited current in nanodiodes: Ballistic, collisional, and dynamical effects
,”
J. Appl. Phys.
129
,
100902
(
2021
).
21.
W.
Chandra
,
L. K.
Ang
,
K. L.
Pey
, and
C. M.
Ng
, “
Two-dimensional analytical Mott–Gurney law for a trap-filled solid
,”
Appl. Phys. Lett.
90
,
153505
(
2007
).
22.
G.
González
, “
Quantum theory of space charge limited current in solids
,”
J. Appl. Phys.
117
,
084306
(
2015
).
23.
Y. B.
Zhu
and
L. K.
Ang
, “
Analytical re-derivation of space charge limited current in solids using capacitor model
,”
J. Appl. Phys.
110
,
094514
(
2011
).
24.
Y. S.
Ang
,
M.
Zubair
, and
L. K.
Ang
, “
Relativistic space-charge-limited current for massive Dirac fermions
,”
Phys. Rev. B
95
,
165409
(
2017
).
25.
P.
Mark
and
W.
Helfrich
, “
Space-charge-limited currents in organic crystals
,”
J. Appl. Phys.
33
,
205
215
(
1962
).
26.
W.
Chandra
,
L. K.
Ang
, and
W. S.
Koh
, “
Two-dimensional model of space charge limited electron injection into a diode with Schottky contact
,”
J. Phys. D: Appl. Phys.
42
,
055504
(
2009
).
27.
C.
Edgcombe
, “
Development of Fowler–Nordheim theory for a spherical field emitter
,”
Phys. Rev. B
72
,
045420
(
2005
).
28.
A.
Kyritsakis
and
J.
Xanthakis
, “
Derivation of a generalized Fowler–Nordheim equation for nanoscopic field-emitters
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
471
,
20140811
(
2015
).
29.
Y.
Shen
,
M. W.
Klein
,
D. B.
Jacobs
,
J. C.
Scott
, and
G. G.
Malliaras
, “
Mobility-dependent charge injection into an organic semiconductor
,”
Phys. Rev. Lett.
86
,
3867
(
2001
).
30.
M.
Baldo
and
S.
Forrest
, “
Interface-limited injection in amorphous organic semiconductors
,”
Phys. Rev. B
64
,
085201
(
2001
).
31.
H.-J.
Chung
,
J. H.
Jeong
,
T. K.
Ahn
,
H. J.
Lee
,
M.
Kim
,
K.
Jun
,
J.-S.
Park
,
J. K.
Jeong
,
Y.-G.
Mo
, and
H. D.
Kim
, “
Bulk-limited current conduction in amorphous InGaZnO thin films
,”
Electrochem. Solid-State Lett.
11
,
H51
(
2008
).
32.
M. S.
Alvar
,
P.
Blom
, and
G.
Wetzelaer
, “
Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites
,”
Nat. Commun.
11
,
4023
(
2020
).
33.
C.
Chua
,
C. Y.
Kee
,
Y. S.
Ang
, and
L. K.
Ang
, “
Absence of space-charge-limited current in unconventional field emission
,”
Phys. Rev. Appl.
16
,
064025
(
2021
).
34.
Y. Y.
Lau
,
Y.
Liu
, and
R. K.
Parker
, “
Electron emission: From the Fowler–Nordheim relation to the Child–Langmuir law
,”
Phys. Plasmas
1
,
2082
2085
(
1994
).
35.
A.
Campbell
,
M.
Weaver
,
D.
Lidzey
, and
D.
Bradley
, “
Bulk limited conduction in electroluminescent polymer devices
,”
J. Appl. Phys.
84
,
6737
6746
(
1998
).
36.
S.
Jain
,
A. K.
Kapoor
,
W.
Geens
,
J.
Poortmans
,
R.
Mertens
, and
M.
Willander
, “
Trap filled limit of conducting organic materials
,”
J. Appl. Phys.
92
,
3752
3754
(
2002
).
37.
M.
Bokdam
,
G.
Brocks
,
M. I.
Katsnelson
, and
P. J.
Kelly
, “
Schottky barriers at hexagonal boron nitride/metal interfaces: A first-principles study
,”
Phys. Rev. B
90
,
085415
(
2014
).
38.
A.
Laturia
,
M. L.
Van de Put
, and
W. G.
Vandenberghe
, “
Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk
,”
NPJ 2D Mater. Appl.
2
,
6
(
2018
).
39.
X. K.
Cao
,
B.
Clubine
,
J. H.
Edgar
,
J. Y.
Lin
, and
H. X.
Jiang
, “
Two-dimensional excitons in three-dimensional hexagonal boron nitride
,”
Appl. Phys. Lett.
103
,
191106
(
2013
).
40.
F.
Mahvash
,
E.
Paradis
,
D.
Drouin
,
T.
Szkopek
, and
M.
Siaj
, “
Space-charge limited transport in large-area monolayer hexagonal boron nitride
,”
Nano Lett.
15
,
2263
2268
(
2015
).
41.
V.
Bougrov
,
M.
Levinshtein
,
S. L.
Rumyantsev
, and
A.
Zubrilov
,
Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe
, edited by
V.
Bougrov
,
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
A.
Zubrilov
(
Wiley
,
New York
,
2001
), pp.
1
50
.
42.
A.
Pierret
,
D.
Mele
,
H.
Graef
,
J.
Palomo
,
T.
Taniguchi
,
K.
Watanabe
,
Y.
Li
,
B.
Toury
,
C.
Journet
,
P.
Steyer
 et al, “
Dielectric permittivity, conductivity and breakdown field of hexagonal boron nitride
,”
Mater. Res. Express
9
,
065901
(
2022
).
43.
F.-C.
Chiu
,
Z.-H.
Lin
,
C.-W.
Chang
,
C.-C.
Wang
,
K.-F.
Chuang
,
C.-Y.
Huang
,
J. Y.-M.
Lee
, and
H.-L.
Hwang
, “
Electron conduction mechanism and band diagram of sputter-deposited Al/ZrO2/Si structure
,”
J. Appl. Phys.
97
,
034506
(
2005
).
44.
J.
Xie
,
Z.
Zhu
,
H.
Tao
,
S.
Zhou
,
Z.
Liang
,
Z.
Li
,
R.
Yao
,
Y.
Wang
,
H.
Ning
, and
J.
Peng
, “
Research progress of high dielectric constant zirconia-based materials for gate dielectric application
,”
Coatings
10
,
698
(
2020
).
45.
R.
Chanana
, “
BOEMDET-band offsets and effective mass determination technique applied to MIS devices on silicon to obtain the unknown bandgap of insulators
,”
IOSR J. Appl. Phys.
6
,
48
55
(
2014
).
46.
Y.
Seo
,
S.
Lee
,
I.
An
,
C.
Song
, and
H.
Jeong
, “
Conduction mechanism of leakage current due to the traps in ZrO2 thin film
,”
Semicond. Sci. Technol.
24
,
115016
(
2009
).
47.
A. M.
Darr
,
A. M.
Loveless
, and
A. L.
Garner
, “
Unification of field emission and space charge limited emission with collisions
,”
Appl. Phys. Lett.
114
,
014103
(
2019
).
48.
S.
Banerjee
and
P.
Zhang
, “
A generalized self-consistent model for quantum tunneling current in dissimilar metal-insulator-metal junction
,”
AIP Adv.
9
,
085302
(
2019
).
49.
S.
Banerjee
,
J.
Luginsland
, and
P.
Zhang
, “
Interface engineering of electrical contacts
,”
Phys. Rev. Appl.
15
,
064048
(
2021
).
50.
S.
Krishnan
,
E.
Stefanakos
, and
S.
Bhansali
, “
Effects of dielectric thickness and contact area on current–voltage characteristics of thin film metal–insulator–metal diodes
,”
Thin Solid Films
516
,
2244
2250
(
2008
).
51.
E. L.
Murphy
and
R.
Good
, Jr.
, “
Thermionic emission, field emission, and the transition region
,”
Phys. Rev
102
,
1464
(
1956
).
52.
P.
Zhang
, “
Scaling for quantum tunneling current in nano-and subnano-scale plasmonic junctions
,”
Sci. Rep.
5
,
9826
(
2015
).
53.
J. G.
Simmons
, “
Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film
,”
J. Appl. Phys.
34
,
1793
1803
(
1963
).
54.
W. J.
Chan
,
C.
Chua
,
Y. S.
Ang
, and
L. K.
Ang
, “
Field emission in emerging two-dimensional and topological materials: A perspective
,”
IEEE Trans. Plasma Sci.
(published online, 2022).
55.
W. J.
Chan
,
Y. S.
Ang
, and
L. K.
Ang
, “
Thermal-field electron emission from three-dimensional Dirac and Weyl semimetals
,”
Phys. Rev. B
104
,
245420
(
2021
).
56.
Y. S.
Ang
,
L.
Cao
, and
L. K.
Ang
, “
Physics of electron emission and injection in two-dimensional materials: Theory and simulation
,”
InfoMat
3
,
502
535
(
2021
).
57.
Y. S.
Ang
,
H. Y.
Yang
, and
L. K.
Ang
, “
Universal scaling laws in Schottky heterostructures based on two-dimensional materials
,”
Phys. Rev. Lett.
121
,
056802
(
2018
).
58.
Y. S.
Ang
,
Y.
Chen
,
C.
Tan
, and
L. K.
Ang
, “
Generalized high-energy thermionic electron injection at graphene interface
,”
Phys. Rev. Appl.
12
,
014057
(
2019
).
59.
Y. S.
Ang
and
L. K.
Ang
, “
Current-temperature scaling for a Schottky interface with nonparabolic energy dispersion
,”
Phys. Rev. Appl.
6
,
034013
(
2016
).
You do not currently have access to this content.