A great deal of interest has been recently directed at exploring how the performance of photovoltaic and thermophotovoltaic systems can benefit from the use of ultra-thin layers and near-field effects. Related questions on how radiation transfer is modified if both the source and sink of the radiation are located within an optical cavity have, however, received far less attention. This question is, nevertheless, particularly relevant in the field of electroluminescence-driven thermophotonics, which could substantially benefit from the possibility to boost the energy transfer by making use of optical cavities. To gain insight into this possibility, we deploy fluctuational electrodynamics and study the fundamental resonance effects in structures where the emitter and absorber layers are separated by a vacuum nanogap and bordered by high-efficiency mirrors. We obtain the expected result that resonance effects can strongly enhance the interactions at specific wavelengths and propagation angles. Moreover, we find that even after integrating over wavelength and propagation angle, (1) the total power emitted can be tuned by adjusting the cavity thickness and the optical cavity mode structure, and (2) thinning the active layer enhances its emission in the cavity, causing a sublinear dependence between the active layer thickness and its overall emission. In plain numbers, adjusting the cavity thickness produces non-monotonous changes of over 50% in the total emission of thin layers. These observations apply also to absorption, which can become remarkably efficient even for an extremely thin absorber layer, thanks to cavity effects.

1.
K.
Lehovec
,
C. A.
Accardo
, and
E.
Jamgochian
, “
Light emission produced by current injected into a green silicon-carbide crystal
,”
Phys. Rev.
89
,
20
(
1953
).
2.
J.
Tauc
, “
The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p–n junction
,”
Czech. J. Phys
7
,
275
(
1957
).
3.
R. J.
Keyes
and
T. M.
Quist
, “
Recombination radiation emitted by gallium arsenide
,”
Proc. IRE
50
,
1822
(
1962
).
4.
G. C.
Dousmanis
,
C. W.
Mueller
,
H.
Nelson
, and
K. G.
Petzinger
, “
Evicence of refrigerating action by means of photon emission in semiconductor diodes
,”
Phys. Rev.
133
,
A316
(
1964
).
5.
T.
Sadi
,
I.
Radevici
, and
J.
Oksanen
, “
Thermophotonic cooling with light-emitting diodes
,”
Nat. Photonics
14
,
205
(
2020
).
6.
P.
Santhanam
,
D. J.
Gray
, Jr.
, and
R. J.
Ram
, “
Thermoelectrically pumped light-emitting diodes operating above unity efficiency
,”
Phys. Rev. Lett.
108
,
097403
(
2012
).
7.
J.
Legendre
and
P.-O.
Chapuis
, “
GaAs-based near-field thermophotonic devices: Approaching the idealized case with one-dimensional PN junctions
,”
Sol. Energy Mater. Sol. Cells
238
,
111594
(
2022
).
8.
I.
Radevici
,
J.
Tiira
,
T.
Sadi
,
S.
Ranta
,
A.
Tukiainen
,
M.
Guina
, and
J.
Oksanen
, “
Thermophotonic cooling in GaAs based light emitters
,”
Appl. Phys. Lett.
114
,
051101
(
2019
).
9.
C.
Lucchesi
,
D.
Cakiroglu
,
J.-P.
Perez
,
T.
Taliercio
,
E.
Tournié
,
P.-O.
Chapuis
, and
R.
Vaillon
, “
Near-field thermophotovoltaic conversion with high electrical power density and cell efficiency above 14%
,”
Nano Lett.
21
,
4524
(
2021
).
10.
A.
Kohiyama
,
M.
Shimizu
,
K.
Konno
,
T.
Furuhashi
, and
H.
Yugami
, “
Effective photon recycling in solar thermophotovoltaics using a confined cuboid emitter
,”
Opt. Express
28
,
38567
(
2020
).
11.
J.
Song
,
J.
Jang
,
M.
Lim
,
M.
Choi
,
J.
Lee
, and
B. J.
Lee
, “
Thermophotovoltaic energy conversion in far-to-near-field transition regime
,”
ACS Photonics
9
,
1748
(
2022
).
12.
A.
LaPotin
,
K. L.
Schulte
,
M. A.
Steiner
,
K.
Buznitsky
,
C. C.
Kelsall
,
D. J.
Friedman
,
E. J.
Tervo
,
R. M.
France
,
M. R.
Young
,
A.
Rohskopf
,
S.
Verma
,
E. N.
Wang
, and
A.
Henry
, “
Thermophotovoltaic efficiency of 40%
,”
Nature
604
,
287
(
2022
).
13.
D.
Fan
,
T.
Burger
,
S.
McSherry
,
B.
Lee
,
A.
Lenert
, and
S. R.
Forrest
, “
Near-perfect photon utilization in an air-bridge thermophotovoltaic cell
,”
Nature
586
,
237
(
2020
).
14.
R.
Mittapally
,
B.
Lee
,
L.
Zhu
,
A.
Reihani
,
J. W.
Lim
,
D.
Fan
,
S. R.
Forrest
,
P.
Reddy
, and
E.
Meyhofer
, “
Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density
,”
Nat. Commun.
12
,
4364
(
2021
).
15.
L.
Zhu
,
A.
Fiorino
,
D.
Thompson
,
R.
Mittapally
,
E.
Meyhofer
, and
P.
Reddy
, “
Near-field photonic cooling through control of the chemical potential of photons
,”
Nature
566
,
239
(
2019
).
16.
A.
Datas
and
R.
Vaillon
, “
Thermionic-enhanced near-field thermophotovoltaics for medium-grade heat sources
,”
Appl. Phys. Lett.
114
,
133501
(
2019
).
17.
A.
Pusch
,
J. M.
Gordon
,
A.
Mellor
,
J. J.
Krich
, and
N. J.
Ekins-Daukes
, “
Fundamental efficiency bounds for the conversion of a radiative heat engine's own emission into work
,”
Phys. Rev. Appl.
12
,
064018
(
2019
).
18.
A.
Bellucci
,
P.
García-Linares
,
A.
Martí
,
D. M.
Trucchi
, and
A.
Datas
, “
A three-terminal hybrid thermionic-photovoltaic energy converter
,”
Adv. Energy Mater.
12
,
2200357
(
2022
).
19.
M. P.
Hehlen
,
J.
Meng
,
A. R.
Albrecht
,
E. R.
Lee
,
A.
Gragossian
,
S. P.
Love
,
C. E.
Hamilton
,
R. I.
Epstein
, and
M.
Sheik-Bahae
, “
First demonstration of an all-solid-state optical cryocooler
,”
Light
7
,
15
(
2018
).
20.
H.-L.
Chen
,
A.
Cattoni
,
R.
De Lépinau
,
A. W.
Walker
,
O.
Höhn
,
D.
Lackner
,
G.
Siefer
,
M.
Faustini
,
N.
Vandamme
,
J.
Goffard
,
B.
Behaghel
,
C.
Dupuis
,
N.
Bardou
,
F.
Dimroth
, and
S.
Collin
, “
A 19,9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror
,”
Nat. Energy
4
,
761
(
2019
).
21.
M.
van Eerden
,
J.
van Gastel
,
G. J.
Bauhuis
,
P.
Mulder
,
E.
Vlieg
, and
J. J.
Schermer
, “
Observation and implications of the Franz-Keldysh effect in ultrathin GaAs solar cells
,”
Prog. Photovoltaics
28
,
779
(
2020
).
22.
M.
van Eerden
,
J.
van Gastel
,
G. J.
Bauhuis
,
E.
Vlieg
, and
J. J.
Schermer
, “
Comprehensive analysis of photon dynamics in thin-film GaAs solar cells with planar and textured rear mirrors
,”
Sol. Energy Mater. Sol. Cells
244
,
111708
(
2022
).
23.
H.
Helmers
,
E.
Lopez
,
O.
Höhn
,
D.
Lackner
,
J.
Schön
,
M.
Schauerte
,
M.
Schachtner
,
F.
Dimroth
, and
A. W.
Bett
, “
68.9% Efficient GaAs-based photonic power conversion enabled by photon recycling and optical resonance
,”
Phys. Status Solidi RRL
15
,
2100113
(
2021
).
24.
S.
McSherry
,
T.
Burger
, and
A.
Lenert
, “
Effects of narrowband transport on near-field and far-field thermophotonic conversion
,”
J. Photonics Energy
9
,
1
(
2019
).
25.
M.
Partanen
,
T.
Häyrynen
,
J.
Tulkki
, and
J.
Oksanen
, “
Commutation-relation-preserving ladder operators for propagating optical fields in nonuniform lossy media
,”
Phys. Rev. A
92
,
033839
(
2015
).
26.
P.
Kivisaari
,
M.
Partanen
,
T.
Sadi
, and
J.
Oksanen
, “
Interplay of photons and charge carriers in thin-film devices
,”
Phys. Rev. Appl.
16
,
024036
(
2021
).
27.
P.
Kivisaari
,
M.
Partanen
, and
J.
Oksanen
, “
Optical admittance method for light-matter interaction in lossy planar resonators
,”
Phys. Rev. E
98
,
063304
(
2018
).
28.
P.
Würfel
, “
The chemical potential of radiation
,”
J. Phys. C
15
,
3967
(
1982
).
29.
E. D.
Palik
, in
Handbook of Optical Constants in Solids
, edited by
E. D.
Palik
(
Academic Press
,
San Diego
,
1998
), p.
429
.
30.
O. J.
Glembocki
and
K.
Takarabe
, in
Handbook of Optical Constants in Solids
, edited by
E. D.
Palik
(
Academic Press
,
San Diego
,
1998
), p.
513
.
31.
E. D.
Palik
, in
Handbook of Optical Constants in Solids
, edited by
E. D.
Palik
(
Academic Press
,
San Diego
,
1998
), p.
350
.
You do not currently have access to this content.