We developed a high-speed and low-noise time-domain current measurement scheme using a homemade GaAs high-electron-mobility-transistor-based cryogenic transimpedance amplifier (TIA). The scheme is versatile for broad cryogenic current measurements, including semiconductor spin-qubit readout, owing to the TIA's having low input impedance comparable to that of commercial room-temperature TIAs. The TIA has a broad frequency bandwidth and a low noise floor, with a trade-off between them governed by the feedback resistance RFB. A lower RFB of 50 kΩ enables high-speed current measurement with a −3 dB cutoff frequency f−3dB = 28 MHz and noise-floor NF = 8.5 × 10−27 A2/Hz, while a larger RFB of 400 kΩ provides low-noise measurement with NF = 1.0 × 10−27 A2/Hz and f−3dB = 4.5 MHz. Time-domain measurement of a 2-nA peak-to-peak square wave, which mimics the output of the standard spin-qubit readout technique via charge sensing, demonstrates a signal-to-noise ratio (SNR) of 12.7, with the time resolution of 48 ns, for RFB = 200 kΩ, which compares favorably with the best-reported values for the radio frequency reflectometry technique. The time resolution can be further improved at the cost of the SNR (or vice versa) by using an even smaller (larger) RFB, with a further reduction in the noise figure possible by limiting the frequency band with a low-pass filter. Our scheme is best suited for readout electronics for cryogenic sensors that require a high time resolution and current sensitivity and, thus, provides a solution for various fundamental research and industrial applications.

1.
L. M. K.
Vandersypen
,
H.
Bluhm
,
J. S.
Clarke
,
A. S.
Dzurak
,
R.
Ishihara
,
A.
Morello
,
D. J.
Reilly
,
L. R.
Schreiber
, and
M.
Veldhorst
, “
Interfacing spin qubits in quantum dots and donors—Hot, dense, and coherent
,”
npj Quantum Inf.
3
,
34
(
2017
).
2.
F.
Ansaloni
,
A.
Chatterjee
,
H.
Bohuslavskyi
,
B.
Bertrand
,
H.
Hutin
,
M.
Vinet
, and
F.
Kuemmeth
, “
Single-electron operations in a foundry-fabricated array of quantum dots
,”
Nat. Commun.
11
,
6399
(
2020
).
3.
K.
Kobayashi
and
M.
Hashisaka
, “
Shot noise in mesoscopic systems: From single particles to quantum liquids
,”
J. Phys. Soc. Jpn.
90
,
102001
(
2021
).
4.
K. M.
Bastiaans
,
T.
Benschop
,
D.
Chatzopoulos
,
D.
Cho
,
Q.
Dong
,
Y.
Jin
, and
M. P.
Allan
, “
Amplifier for scanning tunneling microscopy at MHz frequencies
,”
Rev. Sci. Instrum.
89
,
093709
(
2018
).
5.
D. H.
Johansen
,
J. D.
Sanchez-Heredia
,
J. R.
Petersen
,
T. K.
Johansen
,
V.
Zhurbenko
, and
J. H.
Ardenkjær-Larsen
, “
Cryogenic preamplifiers for magnetic resonance imaging
,”
IEEE Trans. Biomed. Circuits Syst.
12
,
202
210
(
2018
).
6.
A.
Phipps
,
A.
Juillard
,
B.
Sadoulet
,
B.
Serfass
, and
Y.
Jin
, “
A HEMT-based cryogenic charge amplifier with sub-100 eVee ionization resolution for massive semiconductor dark matter detectors
,”
Nucl. Instrum. Methods Phys. Res. A
940
,
181
184
(
2019
).
7.
A.
Bounab
,
O.
Boulade
,
C.
Cervera
,
X.
de la Broïse
,
C.
Delisle
,
Q.
Dong
,
Y.
Jin
,
A.
Lamoure
,
L.
Mathieu
,
V.
Moreau
, and
P.
Mulet
, “
LWIR quantum efficiency measurements using a calibrated MCT photodiode read by a cryo-HEMT-based amplifier
,”
Proc. SPIE
11454
,
1145428
(
2020
).
8.
I. T.
Vink
,
T.
Nooitgedagt
,
R. N.
Schouten
,
L. M.
Vandersypen
, and
W.
Wegscheider
, “
Cryogenic amplifier for fast real-time detection of single electron tunneling
,”
Appl. Phys. Lett.
91
,
123512
(
2007
).
9.
L. A.
Tracy
,
D. R.
Luhman
,
S. M.
Carr
,
N. C.
Bishop
,
G. A. T.
Eyck
,
T.
Pluym
,
J. R.
Wendt
,
M. P.
Lilly
, and
M. S.
Carroll
, “
Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at subkelvin temperatures
,”
Appl. Phys. Lett.
108
,
063101
(
2016
).
10.
L. A.
Tracy
,
J. L.
Reno
,
S.
Fallahi
, and
M. J.
Manfra
, “
Integrated high electron mobility transistors in GaAs/AlGaAs heterostructures for amplification at sub-Kelvin temperatures
,”
Appl. Phys. Lett.
114
,
053104
(
2019
).
11.
J. Z.
Blumoff
,
A. S.
Pan
,
T. E.
Keating
,
R. W.
Andrews
,
D. W.
Barnes
,
T. L.
Brecht
,
E. T.
Croke
,
L. E.
Euliss
,
J. A.
Fast
,
C. A. C.
Jackson
,
A. M.
Jones
,
J.
Kerckhoff
,
R. K.
Lanza
,
K.
Raach
,
B. J.
Thomas
,
R.
Velunta
,
A. J.
Weinstein
,
T. D.
Ladd
,
K.
Eng
,
M. G.
Borselli
,
A. T.
Hunter
, and
M. T.
Rakher
, “
Fast and high-fidelity state preparation and measurement in triple-quantum-dot spin qubits
,”
PRX Quantum
3
,
010352
(
2022
).
12.
A. R.
Mills
,
C. R.
Guinn
,
M. M.
Feldman
,
A. J.
Sigillito
,
M. J.
Gullans
,
M.
Rakher
,
J.
Kerckhoff
,
C. A. C.
Jackson
, and
J. R.
Petta
, “
High fidelity state preparation, quantum control, and readout of an isotopically enriched silicon spin qubit
,” arXiv:2204.09551 [quant-ph] (
2022
).
13.
D.
Keith
,
M. G.
House
,
M. B.
Donnelly
,
T. F.
Watson
,
B.
Weber
, and
M. Y.
Simmons
, “
Single-shot spin readout in semiconductors near the shot-noise sensitivity limit
,”
Phys. Rev. X
9
,
041003
(
2019
).
14.
A.
Noiri
,
K.
Takeda
,
J.
Yoneda
,
T.
Nakajima
,
T.
Kodera
, and
S.
Tarucha
, “
Radio-frequency-detected fast charge sensing in undoped silicon quantum dots
,”
Nano Lett.
20
,
947
952
(
2020
).
15.
Y. Y.
Liu
,
S. G.
Philips
,
L. A.
Orona
,
N.
Samkharadze
,
T.
McJunkin
,
E. R.
Macquarrie
,
M. A.
Eriksson
,
L. M.
Vandersypen
, and
A.
Yacoby
, “
Radio frequency reflectometry in silicon-based quantum dots
,”
Phys. Rev. Appl.
16
,
014057
(
2021
).
16.
S.
Lee
,
M.
Hashisaka
,
T.
Akiho
,
K.
Kobayashi
, and
K.
Muraki
, “
Cryogenic GaAs high-electron-mobility-transistor amplifier for current noise measurements
,”
Rev. Sci. Instrum.
92
,
023910
(
2021
).
17.
M.
Hashisaka
,
T.
Ota
,
M.
Yamagishi
,
T.
Fujisawa
, and
K.
Muraki
, “
Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers
,”
Rev. Sci. Instrum.
85
,
054704
(
2014
).
18.
M.
Hashisaka
,
T.
Ota
,
K.
Muraki
, and
T.
Fujisawa
, “
Shot-noise evidence of fractional quasiparticle creation in a local fractional quantum hall state
,”
Phys. Rev. Lett.
114
,
056802
(
2015
).
19.
T.
Shimizu
,
M.
Hashisaka
,
H.
Bohuslavskyi
,
T.
Akiho
,
N.
Kumada
,
S.
Katsumoto
, and
K.
Muraki
, “
Homemade-HEMT-based transimpedance amplifier for high-resolution shot-noise measurements
,”
Rev. Sci. Instrum.
92
,
124712
(
2021
).
20.
C. H.
Yang
,
R. C.
Leon
,
J. C.
Hwang
,
A.
Saraiva
,
T.
Tanttu
,
W.
Huang
,
J. C.
Lemyre
,
K. W.
Chan
,
K. Y.
Tan
,
F. E.
Hudson
,
K. M.
Itoh
,
A.
Morello
,
M.
Pioro-Ladrière
,
A.
Laucht
, and
A. S.
Dzurak
, “
Operation of a silicon quantum processor unit cell above one kelvin
,”
Nature
580
,
350
354
(
2020
).
21.
L.
Petit
,
H. G.
Eenink
,
M.
Russ
,
W. I.
Lawrie
,
N. W.
Hendrickx
,
S. G.
Philips
,
J. S.
Clarke
,
L. M.
Vandersypen
, and
M.
Veldhorst
, “
Universal quantum logic in hot silicon qubits
,”
Nature
580
,
355
359
(
2020
).
22.
L. C.
Camenzind
,
S.
Geyer
,
A.
Fuhrer
,
R. J.
Warburton
,
D. M.
Zumbühl
, and
A. V.
Kuhlmann
, “
A hole spin qubit in a fin field-effect transistor above 4 kelvin
,”
Nat. Electron.
5
,
178
183
(
2022
).
23.
R.
Mizuta
,
R. M.
Otxoa
,
A. C.
Betz
, and
M. F.
Gonzalez-Zalba
, “
Quantum and tunneling capacitance in charge and spin qubits
,”
Phys. Rev. B
95
,
045414
(
2017
).
24.
L.
DiCarlo
,
Y.
Zhang
,
D. T.
McClure
,
C. M.
Marcus
,
L. N.
Pfeiffer
, and
K. W.
West
, “
System for measuring auto- and cross correlation of current noise at low temperatures
,”
Rev. Sci. Instrum.
77
,
073906
(
2006
).

Supplementary Material

You do not currently have access to this content.