Experimental detection of multiple stable magnetic configurational states in isolated square permalloy particles of side length on the order of 200 nm is reported. The magnetic states are characterized using the anisotropic magnetoresistance via four-terminal resistance measurements of individual particles, and results are corroborated with micromagnetic simulations. The particles tend to relax into a ground state U-shaped “buckle” configuration at larger sizes and for an applied field swept parallel to the particle's edge, but assume an S-shaped configuration at smaller sizes and for slight variations in the applied field angle. The occurrence of this metastable state at room temperature indicates that typical models characterizing such particles in terms of energy landscapes or local effective fields may not be sufficient to accurately describe systems at this scale.

1.
M. E.
Schabes
and
H. N.
Bertram
, “
Magnetization processes in ferromagnetic cubes
,”
J. Appl. Phys.
64
,
1347
1357
(
1988
).
2.
R. P.
Cowburn
, “
Property variation with shape in magnetic nanoelements
,”
J. Phys. D
33
,
R1
R16
(
2000
).
3.
R. P.
Cowburn
and
M. E.
Welland
, “
Phase transitions in planar magnetic nanostructures
,”
Appl. Phys. Lett.
72
,
2041
2043
(
1998
).
4.
D. E.
Endean
,
C. T.
Weigelt
,
R. H.
Victora
, and
E. D.
Dahlberg
, “
Measurements of configurational anisotropy in isolated sub-micron square permalloy dots
,”
Appl. Phys. Lett.
103
,
042409
(
2013
).
5.
A.
Imre
,
G.
Csaba
,
L.
Ji
,
A.
Orlov
,
G.
Bernstein
, and
W.
Porod
, “
Majority logic gate for magnetic quantum-dot cellular automata
,”
Science
311
,
205
208
(
2006
).
6.
A.
Haldar
and
A. O.
Adeyeye
, “
Deterministic control of magnetization dynamics in reconfigurable nanomagnetic networks for logic applications
,”
ACS Nano
10
,
1690
1698
(
2016
).
7.
M.
Sánchez-Agudo
,
F.
Cebollada
, and
J. M.
González
, “
Anisotropy and hysteretic behavior of single-crystal Fe triangular nanomagnets
,”
Physica B
549
,
35
39
(
2018
).
8.
A.
Gomez
,
F.
Cebollada
,
F. J.
Palomares
,
N.
Sanchez
,
E. M.
Gonzalez
,
J. M.
Gonzalez
, and
J. L.
Vicent
, “
Breaking the configurational anisotropy in Fe single crystal nanomagnets
,”
Appl. Phys. Lett.
104
,
102406
(
2014
).
9.
B. K.
Mahato
,
S.
Choudhury
,
R.
Mandal
,
S.
Barman
,
Y.
Otani
, and
A.
Barman
, “
Tunable configurational anisotropy in collective magnetization dynamics of Ni80Fe20 nanodot arrays with varying dot shapes
,”
J. Appl. Phys.
117
,
213909
(
2015
).
10.
R.
Cowburn
,
a
Adeyeye
, and
M.
Welland
, “
Configurational anisotropy in nanomagnets
,”
Phys. Rev. Lett.
81
,
5414
5417
(
1998
).
11.
L.
Thevenard
,
H. T.
Zeng
,
D.
Petit
, and
R. P.
Cowburn
, “
Six-fold configurational anisotropy and magnetic reversal in nanoscale Permalloy triangles
,”
J. Appl. Phys.
106
,
063902
063907
(
2009
).
12.
T. R.
Mcguire
and
R. I.
Potter
, “
Anisotropic magnetoresistance in ferromagnetic 3D alloys
,”
IEEE Trans. Magn.
11
,
1018
1038
(
1975
).
13.
J.
Adler
and
J.
Jackson
, “
System for observing small nonlinearities in tunnel junction
,”
Rev. Sci. Instrum.
37
,
1049
1054
(
1966
).
14.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
15.
We compute the resistance in arbitrary units here rather than using material parameters to calculate an exact resistance, as the overlap of the Au contacts with our particles means that the experimentally measured resistance is likely lower than would be calculated. Our primary concern is with how resistance varies with applied field, and, thus, computing simulated resistance in A.U. suffices here.
16.
It is well established that cell discretization size may scale the effective temperature compared to what is specified in simulation; see, for example, the work of Hahn.19 Here, we report only the temperature specified in the simulation.
17.
J.
Gadbois
,
J. G.
Zhu
,
W.
Vavra
,
A.
Hurst
,
J.
Gadbois
, and
W.
Vavra
, “
The effect of end and edge shape on the performance of pseudo-spin valve memories
,”
IEEE Trans. Magn.
34
,
1066
1068
(
1998
).
18.
Previous simulation work has used the name leaf to describe the configurational state with the net magnetization pointed along the particle diagonal, such as in Ref. 3. We observe a similar state whose configuration is nearly the same, aside from spins in the center of the particle pointing in the direction of one of the particle's edges, hence the name S-state.
19.
M. B.
Hahn
, “
Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau–Lifshitz equation
,”
J. Phys. Commun.
3
,
075009
(
2019
).
You do not currently have access to this content.