It is conventionally believed that lattice thermal conductivity (κ) decreases with increasing atomic mass (negative atomic-mass correlation), and the high κ can only occur in crystals composed of strongly bonded light elements. By solving the fundamental thermal conductivity equation using first-principles calculations, here we reveal the anomalous κ departing from the long-held concept, that is, a positive atomic-mass correlation and high κ with heavy elements and weakly bonded interaction. We demonstrate this anomalous phenomenon by performing calculations of the cross-plane κ of the layered compounds, i.e., the h-BX family with X = N, P, and As. We find that the anomalous increase in the cross-plane κ with X going from N to As results in the cross-plane/in-plane conductivity ratio, generally expected to be much smaller than 1 in layered compounds, reaching as large as 2.6 at low temperatures. We also find that the unusually high cross-plane κ (660 W m−1 K−1), which is comparable to the bulk silicon with strong covalent bonding interactions, can be generated by a weak van der Waals interaction. Our analysis shows that the anomalous κ arises from one-dimensional-like phonons propagating in the cross-plane direction, which is due to the extremely large phonon anisotropy induced by the combined effect of atomic-mass difference and structural anisotropy. This discovery paves an avenue to realize thermally conductive materials that have weakly bonded structures, which can be potentially applied in the design of high-performance nanoelectronic devices.

1.
A. L.
Moore
and
L.
Shi
,
Mater. Today
17
,
163
(
2014
).
2.
3.
H.
Song
,
J.
Liu
,
B.
Liu
,
J.
Wu
,
H. M.
Cheng
, and
F.
Kang
,
Joule
2
,
442
(
2018
).
4.
B.
Hu
,
B.
Li
, and
H.
Zhao
,
Phys. Rev. E
57
,
2992
(
1998
).
5.
D. A.
Broido
,
A.
Ward
, and
N.
Mingo
,
Phys. Rev. B
72
,
014308
(
2005
).
6.
S.
Ghosh
,
W.
Bao
,
D. L.
Nika
,
S.
Subrina
,
E. P.
Pokatilov
,
C. N.
Lau
, and
A. A.
Balandin
,
Nat. Mater.
9
,
555
(
2010
).
7.
X.
Gu
,
Y.
Wei
,
X.
Yin
,
B.
Li
, and
R.
Yang
,
Rev. Mod. Phys.
90
,
041002
(
2018
).
8.
L.
Qiu
,
X.
Zhang
,
Z. X.
Guo
, and
Q.
Li
,
Carbon
178
,
391
(
2021
).
9.
G.
Lucovsky
,
J. C.
Mikkelsen
, Jr.
,
W. Y.
Liang
,
R. M.
White
, and
R. M.
Martin
,
Phys. Rev. B
14
,
1663
(
1976
).
10.
M.
Zeraati
,
S.
Mehdi Vaez Allaei
,
I.
Abdolhosseini Sarsari
,
M.
Pourfath
, and
D.
Donadio
,
Phys. Rev. B
93
,
085424
(
2016
).
11.
G. A.
Slack
,
J. Phys. Chem. Solids
34
,
321
(
1973
).
12.
D. T.
Morelli
and
J. P.
Heremans
,
Appl. Phys. Lett.
81
,
5126
(
2002
).
13.
J.
He
and
T. M.
Tritt
,
Science
357
,
eaak9997
(
2017
).
14.
T.
Fu
,
J.
Xin
,
T.
Zhu
,
J.
Shen
,
T.
Fang
, and
X.
Zhao
,
Sci. Bull.
64
,
1024
(
2019
).
15.
X. L.
Zhu
,
H.
Yang
,
W. X.
Zhou
,
B.
Wang
,
N.
Xu
, and
G.
Xie
,
ACS Appl. Mater. Interfaces
12
,
36102
(
2020
).
16.
A. A.
Balandin
,
Nat. Mater.
10
,
569
(
2011
).
17.
G. A.
Slack
,
J. Appl. Phys.
35
,
3460
(
1964
).
18.
Thermophysical Properties Research Center
, Purdue University,
Thermophysical Properties of Matter
(
Thermophysical Properties Research Center, Purdue University
,
IFI
,
1970
–1979).
19.
J. M.
Ziman
,
Electrons and Phonons
(
Oxford University Press
,
London
,
1960
).
20.
G.
Chen
,
Nanoscale Energy Transport and Conversion
(
Oxford University Press
,
Oxford
,
2005
).
21.
L.
Lindsay
,
D. A.
Broido
, and
N.
Mingo
,
Phys. Rev. B
80
,
125407
(
2009
).
22.
D. L.
Nika
,
S.
Ghosh
,
E. P.
Pokatilov
, and
A. A.
Balandin
,
Appl. Phys. Lett.
94
,
203103
(
2009
).
23.
G.
Xie
,
Z.
Ju
,
K.
Zhou
,
X.
Wei
,
Z.
Guo
,
Y.
Cai
, and
G.
Zhang
,
npj Comput. Mater.
4
,
21
(
2018
).
24.
B.
Peng
,
H.
Zhang
,
H.
Shao
,
Y.
Xu
,
X.
Zhang
, and
H.
Zhu
,
RSC Adv.
6
,
5767
(
2016
).
25.
S.
Li
,
Z. X.
Guo
, and
J. W.
Ding
,
Physica B
561
,
164
(
2019
).
26.
H.
Fan
,
H.
Wu
,
L.
Lindsay
, and
Y.
Hu
,
Phys. Rev. B
100
,
085420
(
2019
).
27.
P.
Jiang
,
X.
Qian
,
R.
Yang
, and
L.
Lindsay
,
Phys. Rev. Mater.
2
,
064005
(
2018
).
28.
Y.
Hu
,
D.
Li
,
Y.
Yin
,
S.
Li
,
H.
Zhou
, and
G.
Zhang
,
RSC Adv.
10
,
25305
(
2020
).
29.
Z. Z.
Zhou
,
H. J.
Liu
,
D. D.
Fan
,
G. H.
Cao
, and
C. Y.
Sheng
,
Phys. Rev. B
99
,
085410
(
2019
).
30.
C.
Yuan
,
J.
Li
,
L.
Lindsay
,
D.
Cherns
,
J. W.
Pomeroy
,
S.
Liu
,
J. H.
Edgar
, and
M.
Kuball
,
Commun. Phys.
2
,
43
(
2019
).
31.
M. S.
Li
,
D. C.
Mo
, and
S. S.
Lyu
,
Sci. Rep.
11
,
10030
(
2021
).
32.
L.
Wirtz
and
A.
Rubio
,
Solid State Commun.
131
,
141
(
2004
).
33.
H. Y.
Cao
,
Z. X.
Guo
,
H.
Xiang
, and
X. G.
Gong
,
Phys. Lett. A
376
,
525
(
2012
).
34.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
,
Comput. Phys. Commun.
185
,
1747
(
2014
).
35.
Note that recent advances in the theoretical studies have shown that four-phonon processes might be important for semiconductors with a large frequency gap due to the much larger phonon scattering phase space of four-phonon processes compared to the three-phonon processes. Nevertheless, the necessity of considering the four-phonon processes in the layered h-BX bulk structures is still to be demonstrated. Moreover, previous studies indicate that the four-phonon processes are insignificant in the low temperature region (T < 200 K),36,37 which is the main concern of this study. Thus, we have only considered the three-phonon processes in the thermal conductivity calculations.
36.
T.
Feng
,
L.
Lindsay
, and
X.
Ruan
,
Phys. Rev. B
96
,
161201(R)
(
2017
).
37.
W.
Ren
,
J.
Chen
, and
G.
Zhang
,
Appl. Phys. Lett.
121
,
140501
(
2022
).
38.
We have calculated κr of monolayer h-BP, and found it is much smaller than that in the bulk h-BP. For example, at 100 K κr of monolayer h-BP is only 634 W m−1 K−1, a half of that in the bulk structure. This result shows that the interlayer interaction has an effect of significantly increasing κr of h-BP, which is contrary to that in graphite and h-BN.
39.
P.
Torres
,
A.
Torelló
,
J.
Bafaluy
,
J.
Camacho
,
X.
Cartoixà
, and
F. X.
Alvarez
,
Phys. Rev. B
95
,
165407
(
2017
).
40.
S.
Lepri
,
R.
Livi
, and
A.
Politi
,
Phys. Rep.
377
(
1
),
1–80
(
2003
).
41.
S.
Lepri
,
R.
Livi
, and
A.
Politi
,
Phys. Rev. Lett.
78
,
1896
(
1997
).
42.
G.
Wu
and
J.
Dong
,
Phys. Rev. B
71
,
115410
(
2005
).
43.
D.
Donadio
and
G.
Galli
,
Phys. Rev. Lett.
102
,
195901
(
2009
).
44.
N.
Yang
,
G.
Zhang
, and
B.
Li
,
Nano Today
5
,
85
(
2010
).
45.
A. A.
Balandin
and
D. L.
Nika
,
Mater. Today
15
,
266
(
2012
).
46.
M.-H.
Bae
,
Z.
Li
,
Z.
Aksamija
,
P. N.
Martin
,
F.
Xiong
,
Z.-Y.
Ong
,
I.
Knezevic
, and
E.
Pop
,
Nat. Commun.
4
,
1734
(
2013
).
47.
X.
Xu
,
L. F. C.
Pereira
,
Y.
Wang
,
J.
Wu
,
K.
Zhang
,
X.
Zhao
,
S.
Bae
,
C. T.
Bui
,
R.
Xie
,
J. T. L.
Thong
,
B. H.
Hong
,
K. P.
Loh
,
D.
Donadio
,
B.
Li
, and
B.
Özyilmaz
,
Length- dependent thermal conductivity in suspended single-layer graphene
,
Nat. Commun.
5
,
3689
(
2014
).

Supplementary Material

You do not currently have access to this content.